We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Plasmodium coatneyi has been proposed as an animal model for human Plasmodium falciparum malaria as it appears to replicate many aspects of pathogenesis and clinical symptomology. As part of the ongoing evaluation of the rhesus macaque model of severe malaria, a detailed ultrastructural analysis of the interaction between the parasite and both the host erythrocytes and the microvasculature was undertaken. Tissue (brain, heart and kidney) from splenectomized rhesus macaques and blood from spleen-intact animals infected with P. coatneyi were examined by electron microscopy. In all three tissues, similar interactions (sequestration) between infected red blood cells (iRBC) and blood vessels were observed with evidence of rosette and auto-agglutinate formation. The iRBCs possessed caveolae similar to P. vivax and knob-like structures similar to P. falciparum. However, the knobs often appeared incompletely formed in the splenectomized animals in contrast to the intact knobs exhibited by spleen intact animals. Plasmodium coatneyi infection in the monkey replicates many of the ultrastructural features particularly associated with P. falciparum in humans and as such supports its use as a suitable animal model. However, the possible effect on host–parasite interactions and the pathogenesis of disease due to the use of splenectomized animals needs to be taken into consideration.
As industrial-organizational (I-O) psychologists, we have expertise in applying psychological and/or organizational science to the workplace. However, many of us haven’t taken the time to think about how our I-O psychology knowledge can apply to our teaching practice. We walk through some examples of how I-O psychology research can help us be better teachers, and the goal of our paper is to encourage readers to make evidence-based changes to their teaching based on I-O psychology research. We organize our discussion around four areas: training and development, diversity and inclusion, groups and teams, and leadership. Within each, we offer small, medium, and large changes that could be incorporated into classrooms. We hope that readers will be inspired to build on what they do in their classrooms to help students learn about (and be inspired by) our field.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The radiocarbon (14C) calibration curve so far contains annually resolved data only for a short period of time. With accelerator mass spectrometry (AMS) matching the precision of decay counting, it is now possible to efficiently produce large datasets of annual resolution for calibration purposes using small amounts of wood. The radiocarbon intercomparison on single-year tree-ring samples presented here is the first to investigate specifically possible offsets between AMS laboratories at high precision. The results show that AMS laboratories are capable of measuring samples of Holocene age with an accuracy and precision that is comparable or even goes beyond what is possible with decay counting, even though they require a thousand times less wood. It also shows that not all AMS laboratories always produce results that are consistent with their stated uncertainties. The long-term benefits of studies of this kind are more accurate radiocarbon measurements with, in the future, better quantified uncertainties.
Introduction: CAEP recently developed the acute atrial fibrillation (AF) and flutter (AFL) [AAFF] Best Practices Checklist to promote optimal care and guidance on cardioversion and rapid discharge of patients with AAFF. We sought to assess the impact of implementing the Checklist into large Canadian EDs. Methods: We conducted a pragmatic stepped-wedge cluster randomized trial in 11 large Canadian ED sites in five provinces, over 14 months. All hospitals started in the control period (usual care), and then crossed over to the intervention period in random sequence, one hospital per month. We enrolled consecutive, stable patients presenting with AAFF, where symptoms required ED management. Our intervention was informed by qualitative stakeholder interviews to identify perceived barriers and enablers for rapid discharge of AAFF patients. The many interventions included local champions, presentation of the Checklist to physicians in group sessions, an online training module, a smartphone app, and targeted audit and feedback. The primary outcome was length of stay in ED in minutes from time of arrival to time of disposition, and this was analyzed at the individual patient-level using linear mixed effects regression accounting for the stepped-wedge design. We estimated a sample size of 800 patients. Results: We enrolled 844 patients with none lost to follow-up. Those in the control (N = 316) and intervention periods (N = 528) were similar for all characteristics including mean age (61.2 vs 64.2 yrs), duration of AAFF (8.1 vs 7.7 hrs), AF (88.6% vs 82.9%), AFL (11.4% vs 17.1%), and mean initial heart rate (119.6 vs 119.9 bpm). Median lengths of stay for the control and intervention periods respectively were 413.0 vs. 354.0 minutes (P < 0.001). Comparing control to intervention, there was an increase in: use of antiarrhythmic drugs (37.4% vs 47.4%; P < 0.01), electrical cardioversion (45.1% vs 56.8%; P < 0.01), and discharge in sinus rhythm (75.3% vs. 86.7%; P < 0.001). There was a decrease in ED consultations to cardiology and medicine (49.7% vs 41.1%; P < 0.01), but a small but insignificant increase in anticoagulant prescriptions (39.6% vs 46.5%; P = 0.21). Conclusion: This multicenter implementation of the CAEP Best Practices Checklist led to a significant decrease in ED length of stay along with more ED cardioversions, fewer ED consultations, and more discharges in sinus rhythm. Widespread and rigorous adoption of the CAEP Checklist should lead to improved care of AAFF patients in all Canadian EDs.
Abnormalities of orbitofrontal cortex (OFC) sulcogyral patterns have been reported in schizophrenia, but it is not known if these predate psychosis.
Methods
Hundred and forty-six subjects at high genetic risk of schizophrenia, 34 first episode of schizophrenia patients (SZ) and 36 healthy controls were scanned and clinically assessed. Utilising the classification system proposed by Chiavaras, we categorised OFC patterns and compared their distribution between the groups, as well as between those high risk subjects who did, and did not develop schizophrenia. The relationship between OFC pattern and schizotypy was explored in high risk subjects.
Results
We refined Chiavaras’ classification system, with the identification of a previously unreported variant of OFC surface structure. There were significant differences in distribution of OFC patterns between high risk subjects who did or did not develop schizophrenia as well as between the first episode of schizophrenia group and healthy controls. Within the high risk group, possession of OFC Type III was associated with higher ratings on the Structured Inventory for Schizotypy (SIS) psychotic factor.
Conclusions
Our results suggest that OFC Type III is associated with psychotic features before the development of schizophrenia. Characterisation of OFC morphology may have a role in the identification of those at greatest risk of developing schizophrenia.
We present a detailed overview of the cosmological surveys that we aim to carry out with Phase 1 of the Square Kilometre Array (SKA1) and the science that they will enable. We highlight three main surveys: a medium-deep continuum weak lensing and low-redshift spectroscopic HI galaxy survey over 5 000 deg2; a wide and deep continuum galaxy and HI intensity mapping (IM) survey over 20 000 deg2 from $z = 0.35$ to 3; and a deep, high-redshift HI IM survey over 100 deg2 from $z = 3$ to 6. Taken together, these surveys will achieve an array of important scientific goals: measuring the equation of state of dark energy out to $z \sim 3$ with percent-level precision measurements of the cosmic expansion rate; constraining possible deviations from General Relativity on cosmological scales by measuring the growth rate of structure through multiple independent methods; mapping the structure of the Universe on the largest accessible scales, thus constraining fundamental properties such as isotropy, homogeneity, and non-Gaussianity; and measuring the HI density and bias out to $z = 6$. These surveys will also provide highly complementary clustering and weak lensing measurements that have independent systematic uncertainties to those of optical and near-infrared (NIR) surveys like Euclid, LSST, and WFIRST leading to a multitude of synergies that can improve constraints significantly beyond what optical or radio surveys can achieve on their own. This document, the 2018 Red Book, provides reference technical specifications, cosmological parameter forecasts, and an overview of relevant systematic effects for the three key surveys and will be regularly updated by the Cosmology Science Working Group in the run up to start of operations and the Key Science Programme of SKA1.
On many Australian commercial pig farms, groups of growing pigs are mass-medicated through their drinking water with selected antimicrobials for short periods to manage herd health. However, delivery of medication in drinking water cannot be assumed to deliver an equal dose to all animals in a group. There is substantial between-animal variability in systemic exposure to an antimicrobial (i.e. the antimicrobial concentration in plasma), resulting in under-dosing or over-dosing of many pigs. Three sources of this between-animal variability during a water medication dosing event are differences in: (1) concentration of the active constituent of the antimicrobial product in water available to pigs at drinking appliances in each pen over time, (2) medicated water consumption patterns of pigs in each pen over time, and (3) pharmacokinetics (i.e. oral bioavailability, volume of distribution and clearance between pigs and within pigs over time). It is essential that factors operating on each farm that influence the range of systemic exposures of pigs to an antimicrobial are factored into antimicrobial administration regimens to reduce under-dosing and over-dosing.
We have observed the G23 field of the Galaxy AndMass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase to validate the performance of the telescope and to characterise the detected galaxy populations. This observation covers ~48 deg2 with synthesised beam of 32.7 arcsec by 17.8 arcsec at 936MHz, and ~39 deg2 with synthesised beam of 15.8 arcsec by 12.0 arcsec at 1320MHz. At both frequencies, the root-mean-square (r.m.s.) noise is ~0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR versus radio luminosity relation, the ASKAP-detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical, and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for ~30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources aremore likely (~6%) to have an AGN than radio quiet galaxies (~1%), but the majority of AGN are not detected in radio at this sensitivity.
Exposure to armed conflict and forced displacement constitute significant risks for mental health. Existing evidence-based psychological interventions have limitations for scaling-up in low-resource humanitarian settings. The WHO has developed a guided self-help intervention, Self Help Plus (SH+), which is brief, implemented by non-specialists, and designed to be delivered to people with and without specific mental disorders. This paper outlines the study protocol for an evaluation of the SH+ intervention in northern Uganda, with South Sudanese refugee women.
Methods.
A two-arm, single-blind cluster-randomised controlled trial will be conducted in 14 villages in Rhino Camp refugee settlement, with at least 588 women experiencing psychological distress. Villages will be randomly assigned to receive either SH+ with enhanced usual care (EUC), or EUC alone. SH+ is a five-session guided self-help intervention delivered in workshops with audio-recorded materials and accompanying pictorial guide. The primary outcome is reduction in overall psychological distress over time, with 3 months post-treatment as the primary end-point. Secondary outcomes are self-defined psychosocial concerns, depression and post-traumatic stress disorder symptoms, hazardous alcohol use, feelings of anger, interethnic relations, psychological flexibility, functional impairment and subjective wellbeing. Psychological flexibility is a hypothesised mediator, and past trauma history and intervention attendance will be explored as potential moderators.
Discussion.
This trial will provide important information on the effectiveness of a scalable, guided self-help intervention for improving psychological health and wellbeing among people affected by adversity.
In this period of unprecedented levels of displacement, scalable interventions are needed to address mental health concerns of forced migrants in low-resource settings. This paper describes the adaptation and piloting of a guided, multi-media, self-help intervention, Self-Help Plus (SH+), which was developed to reduce psychological distress in large groups of people affected by adversity.
Methods.
Using a phased approach that included community consultations, cognitive interviewing, facilitator training, pilot implementation, and a qualitative process evaluation, we adapted SH+ for use among South Sudanese refugees in a refugee settlement in northern Uganda.
Results.
The SH+ materials, including audio-recorded sessions and an accompanying illustrated manual, were translated into Juba Arabic. Cognitive interviewing primarily resulted in adaptations to language with some minor adaptations to content. Facilitator training and supervision led to further suggested changes to delivery methods. An uncontrolled pilot study (n = 65) identified changes in the expected direction on measures of psychological distress, functional impairment, depression, wellbeing, and psychological flexibility. The process evaluation resulted in further adaptations to intervention materials and the decision to focus future effectiveness evaluations of the intervention in its current form on South Sudanese female refugees.
Conclusions.
We found that this potentially scalable, guided self-help intervention could be adapted for and feasibly implemented among female South Sudanese refugees in northern Uganda. These findings lay the groundwork for a future rigorous evaluation of SH+ in this context.
A bluish-green clay found in veins cutting across brecciated slates of the Llanvirnian stage at Huy, Belgium, is shown by X-ray diffraction and chemical analysis to be a lithium-bearing, aluminium-rich, regular mixed layer montmorillonite-chlorite with associated pyrophyllite, nacrite and quartz and smaller amounts of calcite and ankerite. The cation exchange capacity of the purified air-dry magnesium saturated clay is 49 mEq/100 g and its structural formula is
The problem of the nomenclature of regular mixed layer montmorillonite-chlorites is discussed.
Understanding the biogeochemical behaviour of arsenic in the weathering and shallow subsurface environment depends critically upon determining the nature and distribution of the chemical species present in natural waters. To this end, coupled ion chromatography-inductively coupled plasma mass spectrometry (IC-ICP-MS) is widely used, though species fractionation during ultrasonic nebulization, and matrix-dependent ionization in the plasma are analytical issues that need to be addressed. Hexapole collision cell technology is shown to be effective in suppressing chloride-based polyatomic interferences. Irrespective of the analytical technique used, As(III)/As(V) ratios of natural waters may change substantially during storage due to (1) differential adsorption of arsenic species on hydrated ferric oxides (HFOs); and (2) microbial activity. A wide range of apparently contradictory speciation changes observed by various workers can be rationalized in terms of the differences of microbial consortia present in different water samples. Arsenic speciation in certain water types can be stabilized for days or even weeks by combined filtration, acidification and refrigeration whilst the addition of EDTA and the use of 0.1 mm filters is indicated for iron-rich waters and waters with high activities of redox-active bacteria, respectively. Although the use of hydrochloric acid has been reported elsewhere as resulting in the apparent oxidation of As(III), we show that for certain water types it acts as an extremely effective preservative of arsenic speciation.
The availability of analytical methods that utilize the very intense and bright X-rays from synchrotron radiation sources has fundamentally changed the way in which geoscientists, environmental scientists and soil scientists study complex environmental samples and decipher the chemical and biological processes that impact the speciation, transport and potential bioavailability of environmental toxins (Brown et al., 2006). Such samples are often mixtures of crystalline and amorphous phases in particle-sizes ranging from cm to nm, adsorbed metal ions and organic molecules, natural organic matter, microbial organisms, algae, plant materials and aqueous solutions. The processes that affect the chemical forms and environmental fate of contaminants in such mixtures range from surface adsorption, desorption, precipitation and dissolution reactions, often involving a combination of hydrolysis, ligand exchange and electron transfer, to biological interactions in which microbial organisms, algae or plants interact with mineral surfaces and environmental contaminants.
Silica sinter masses in the southern portion of the Pliocene Puhipuhi geothermal field of Northland, New Zealand, have recrystallized to microcrystalline quartz and moganite but many primary depositional fabrics of the sinters can still be recognized. Finely disseminated cinnabar, acicular stibnite, pyrite framboids and minor livingstonite are distributed through both massive sinter and stromatolitic fabrics with sulphide mineralization extending from fractured rocks about former spring vents into less disturbed sinter layers. The deposition of sulphides in the sinters is part of a continuum of mineralization resulting from the former hydrothermal regime and which extends to depth in the extinct geothermal system. Periodic changes in the hydrology, such as repeated fracturing following fracture sealing facilitated episodic sulphide deposition. Mercury is considered to have travelled in the liquid phase with antimony and precipitated directly as cinnabar. Remobilization of the sulphides, along with the recrystallization of the sinter masses, have produced complex textural relations. The multifaceted paragenesis of the sulphides is reflected in the range of their minor and trace element compositions revealed by electron microprobe analyses.
In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residual strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. Knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.