We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to assess the impact of hypertensive disorders of pregnancy on infant neurodevelopment by comparing 6-month and 2-year psychomotor development outcomes of infants exposed to gestational hypertension (GH) or preeclampsia (PE) versus normotensive pregnancy (NTP). Participating infants were children of women enrolled in the Postpartum Physiology, Psychology and Paediatric (P4) cohort study who had NTPs, GH or PE. 6-month and 2-year Ages and Stages Questionnaires (ASQ-3) scores were categorised as passes or fails according to domain-specific values. For the 2-year Bayley Scales of Infant and Toddler Development (BSID-III) assessment, scores > 2 standard deviations below the mean in a domain were defined as developmental delay. Infants (n = 369, male = 190) exposed to PE (n = 75) versus GH (n = 20) and NTP (n = 274) were more likely to be born small for gestational age and premature. After adjustment, at 2 years, prematurity status was significantly associated with failing any domain of the ASQ-3 (p = 0.015), and maternal tertiary education with increased cognitive scores on the BSID-III (p = 0.013). However, PE and GH exposure were not associated with clinically significant risks of delayed infant neurodevelopment in this study. Larger, multicentre studies are required to further clarify early childhood neurodevelopmental outcomes following hypertensive pregnancies.
Sleep apnea is one of the most common sleep disorders and it is related to multiple negative health consequences. Previous studies have shown that sleep apnea is influenced by genetic factors. However, studies have not investigated the genetic and environmental influences of symptoms of sleep apnea in young adults. Furthermore, the underpinnings of the relationship between apnea symptoms and internalizing/externalizing problems are unknown. The objectives of this study were to estimate the magnitude of: (1) genetic and environmental influences on self-reported apnea symptoms; (2) the relationship between self-reported apnea symptoms and internalizing/externalizing traits; (3) genetic and environmental influences on the associations between self-reported apnea symptoms, internalizing behaviors and externalizing behaviors.
Methods
In a twin/sibling study, univariate and multivariate models were fitted to estimate both individual variance and sources of covariance between symptoms of sleep apnea and internalizing/externalizing behaviors.
Results
Our results show that genetic influences account for 40% of the variance in sleep apnea symptoms. Moreover, there are modest associations between depression, anxiety and externalizing behaviors with apnea symptoms (ranging from r = 0.22–0.29). However, the origins of these associations differ. For example, whereas most of the covariation between symptoms of depression and sleep apnea can be explained by genes (95%), there was a larger role for the environment (53%) in the association between symptoms of anxiety and sleep apnea.
Conclusions
Genetic factors explain a significant proportion of variance in symptoms of apnea and most of the covariance with depression.
For vascular trauma purposes the abdomen is divided into four retroperitoneal anatomical areas:
Zone 1: The midline retroperitoneum from the aortic hiatus to the sacral promontory is broken into supramesocolic and inframesocolic areas. The supramesocolic area contains the suprarenal aorta and its major branches (celiac artery, superior mesenteric artery, and renal arteries), the supramesocolic segment of the inferior vena cava with its major branches, and the superior mesenteric vein. The inframesocolic area contains the infrarenal aorta and infrarenal inferior vena cava.
Zone 2 (left and right): This is the paired right and left region lateral of Zone 1 containing the kidneys and renal vessels.
Zone 3: The pelvic retroperitoneum, which contains the iliac vessels.
The abdominal aorta originates between the two crura of the diaphragm at the level of T12–L1 and bifurcates into the common iliac arteries at the level of L4–5. The umbilicus is an approximate external landmark for the aortic bifurcation. The first large branch is the celiac trunk, followed by the superior mesenteric artery 1–2 cm inferiorly, and both course anteriorly and inferiorly. The renal arteries originate 1–2 cm below the origin of the superior mesenteric artery at the level of L2 and course laterally. Finally, the inferior mesenteric artery originates 2–5 cm above the aortic bifurcation on the left anterior aspect of the aorta.
Celiac artery: The main trunk originates on the anterior surface of the aorta at the level of T12–L1. It is 1–2 cm long and divides into three branches at the upper border of the pancreas—the common hepatic, left gastric, and splenic arteries. The celiac is encased in extensive fibrous, ganglionic, and lymphatic tissues, which makes surgical dissection of the celiac artery difficult. In 10–20% of patients, the left gastric artery gives off a replaced left hepatic artery that courses through the gastrohepatic omentum and can be injured while mobilizing the left lobe of the liver or lesser curve of the stomach.
Superior mesenteric artery (SMA): The SMA originates from the anterior surface of the aorta at the level of L1, 1–2 cm below the celiac artery. It courses posterior to the neck of the pancreas and anterior to the third part of the duodenum, beyond which it enters the root of the mesentery. SMA branches include the inferior pancreaticoduodenal artery, the middle colic artery, an arterial arcade with 12–18 intestinal branches, the right colic artery, and the ileocolic artery. In 10–20% of patients, the SMA gives off a replaced right hepatic artery, which courses posterior to the head of the pancreas and runs posteriorly and to the right of the portal vein.
Renal arteries: The right renal artery emerges at a slightly higher level and is longer than the left and courses posteriorly to the inferior vena cava. Approximately 30% of patients have more than one renal artery, usually an accessory artery supplying the lower pole of the kidney. Both renal veins lie anteriorly of their accompanying renal arteries. The left renal vein is significantly longer than the right and courses anteriorly to the aorta. The left renal vein drains the left gonadal vein inferiorly, the left adrenal vein superiorly, and the renolumbar vein posteriorly. The right gonadal vein drains directly into the IVC.
Inferior mesenteric artery (IMA): The IMA provides blood supply to the left colon, sigmoid, and the rectum. It communicates with the SMA through the marginal artery of Drummond and arc of Riolan.
Res Gestae 34.3 (‘auctoritate omnibus praestiti’) is conventionally taken to reflect Augustus' conception of the fundamental nature of his rule, and a great deal of attention has consequently been given to the word auctoritas. But no other source repeats this idea or gives weight to auctoritas. The passage is best understood as alluding to a specific event, probably Octavian's becoming princeps senatus in 28 b.c.
The Genesis 12–19 (G1219) Study is an ongoing longitudinal study of a sample of UK twin pairs, non-twin sibling pairs, and their parents. G1219 was initially designed to examine the role of gene–environment interplay in adolescent depression. However, since then data have continued to be collected from both parents and their offspring into young adulthood. This has allowed for longitudinal analyses of depression and has enabled researchers to investigate multiple phenotypes and to ask questions about intermediate mechanisms. The study has primarily focused on emotional development, particularly depression and anxiety, which have been assessed at multiple levels of analysis (symptoms, cognitions, and relevant environmental experiences). G1219 has also included assessment of a broader range of psychological phenotypes ranging from antisocial behaviors and substance use to sleep difficulties, in addition to multiple aspects of the environment. DNA has also been collected. The first wave of data collection began in the year 1999 and the fifth wave of data collection will be complete before the end of 2012. In this article, we describe the sample, data collection, and measures used. We also summarize some of the key findings to date.
Certain aspects of sleep co-occur with externalizing behaviours in youth, yet little is known about these associations in adults. The present study: (1) examines the associations between diurnal preference (morningness versus eveningness), sleep quality and externalizing behaviours; (2) explores the extent to which genetic and environmental influences are shared between or are unique to these phenotypes; (3) examines the extent to which genetic and environmental influences account for these associations.
Method
Questionnaires assessing diurnal preference, sleep quality and externalizing behaviours were completed by 1556 young adult twins and siblings.
Results
A preference for eveningness and poor sleep quality were associated with greater externalizing symptoms [r=0.28 (95% CI 0.23–0.33) and 0.34 (95% CI 0.28–0.39), respectively]. A total of 18% of the genetic influences on externalizing behaviours were shared with diurnal preference and sleep quality and an additional 14% were shared with sleep quality alone. Non-shared environmental influences common to the phenotypes were small (2%). The association between diurnal preference and externalizing behaviours was mostly explained by genetic influences [additive genetic influence (A)=80% (95% CI 0.56–1.01)], as was the association between sleep quality and externalizing behaviours [A=81% (95% CI 0.62–0.99)]. Non-shared environmental (E) influences accounted for the remaining variance for both associations [E=20% (95% CI −0.01 to 0.44) and 19% (95% CI 0.01–0.38), respectively].
Conclusions
A preference for eveningness and poor sleep quality are moderately associated with externalizing behaviours in young adults. There is a moderate amount of shared genetic influences between the phenotypes and genetic influences account for a large proportion of the association between sleep and externalizing behaviours. Further research could focus on identifying specific genetic polymorphisms common to both sleep and externalizing behaviours.
Psychrotrophs, particularly Pseudomonas spp. are known to be the main determinants of the shelf-life of pasteurized milk and refrigerated raw milk. It is presumed that they mainly cause spoilage through the elaboration of proteinase and lipase enzymes. At the time of this research, under the relevant European Directive, one of the means of determining the quality of pasteurized milk was the pre-incubated count, which involves incubating the milk sample for 5 d at 6°C followed by a plate count. Examination of numerous pre-incubated counts revealed a bimodal rather than a normal distribution indicating that the types of contaminants in pasteurized milk may be as important as their initial concentration. Pseudomonads that gave particularly high (>5×106 cfu/ml) and low (<103 cfu/ml) pre-incubated counts were isolated (high and low count isolates respectively). After the organisms had been subjected to a cold shock no consistent trend between the groups of isolates was detected with respect to lag phase duration. However, the high count isolates consistently had a faster exponential growth rate. Unexpectedly, with the exception of one isolate, the low count isolates produced detectable proteinase and lipase earlier. In addition, with one exception, maximal proteinase and lipase production was observed with the low count isolates. These findings indicate that there is no causal relationship between selective growth advantage and ability to produce proteinase and lipase. It also indicates that the spoilage of pasteurized milk is a complex phenomenon and is worthy of further research.
Nine organisms were isolated from separate pasteurized milk samples after they had been incubated at 6 °C for 5 d (European Union preincubated count, PIC), four from high count samples (> 5 x 106 cfu/ml) and five from low count samples (< 103 cfu/ml). When the organisms were harvested without overt stress being applied and subjected to a simulated PIC using UHT whole milk, all except one isolate gave comparatively high (> 106 cfu/ml) counts. The imposition of a heat stress at 50 °C prior to a simulated PIC resulted in a segregation of the isolates into those giving high and those giving low counts, which reflected the PIC values of the milk samples from which they were originally isolated. When the isolates were subjected to a cold stress (25 to 4 °C) and inoculated into nutrient broth at 4 °C, the high count isolates were found to have significantly (P < 0·05) shorter lag phases than the low count isolates.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.