We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study investigates the spatial distribution of inertial particles in turbulent Taylor–Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian–Lagrangian approach, with a fixed inner-wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number ($St$) varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential concentration of particles near the outer-wall region. Employing two-dimensional Voronoï analysis, we observe a pronounced particle clustering with increasing $St$, particularly evident in regions of low fluid velocity. Additionally, we investigate the concentration balance equation, inspired by the work of Johnson et al. (J. Fluid Mech., vol. 883, 2020, A27), to examine the particle radial distribution. We discern the predominant sources of influence, namely biased sampling, turbophoresis and centrifugal effects. Across all cases, centrifugal force emerges as the primary driver, causing particle migration toward the outer wall. Biased sampling predominantly affects smaller inertial particles, driving them toward the inner wall due to sampling within Taylor rolls with inward radial velocity. Conversely, turbophoresis primarily impacts larger inertial particles, inducing migration towards both walls where turbulent intensity is weaker compared with the bulk. With the revealed physics, our work provides a basis for predicting and controlling particle movement and distribution in industrial applications.
Caring for children with solid tumors (STs) can impact caregiver’s physical and mental health. Caregiver mastery, which influences psychological well-being, is vital in improving outcomes for both caregivers and children. The study aimed to investigate the relationship between caregiver mastery, anxiety, depression, fear of disease progression (FoP), caregiver burden, and the quality of life (QOL) of children with ST.
Methods
This cross-sectional study was conducted from June 2022 to April 2023 at a Grade A tertiary hospital in Shandong. Family caregivers of children with ST completed several validated measures, including the Pediatric Quality of Life Inventory (PedsQL) 3.0 Cancer Module, the Fear of Progression Questionnaire-parent version (FoP-Q-SF/PR), the Zarit Burden Interview Scale (ZBI), the hospital anxiety and depression scale (HADS), and the Caregiver Mastery Scale. Multiple linear regression analyses assessed the relationships between FoP, caregiver burden, anxiety, depression, caregiver mastery, and children’s QOL. Results were expressed as β and 95% confidence intervals (CIs).
Results
A total of 454 caregivers participated. Caregiver mastery was positively correlated with children’s QOL (β = 0.80, 95% CI: 0.20 to 1.39). Depression (β = −0.64, 95% CI: −0.83 to −0.45), anxiety (β = −0.67, 95% CI: −0.85 to −0.49), caregiver burden (β = −1.20, 95% CI: −1.60 to −0.80), and FoP (β = −0.04, 95% CI: −0.05 to −0.03) were negatively related to children’s QOL. Caregiver mastery moderated the associations between depression, caregiver burden, FoP, and children’s QOL, while also improving the effect of mild anxiety on QOL.
Significance of results
The study underscores the importance of fostering caregiver mastery to mitigate the negative impact of caregiver distress on children’s QOL and improve outcomes for both caregivers and children with solid tumors.
Conclusion
Caregiver mastery moderates the effects of anxiety, depression, FoP, and caregiver burdenon children’s QOL. Supporting caregiver mastery can alleviate caregiver burden and enhance both caregiver and child well-being.
A diverse range of services often supplements procedures that involve medical technologies and adds value along patient care pathways. However, these novel elements of value are often not captured in traditional assessment frameworks. ExpertLink is one such example. ExpertLink uses digital solutions to connect clinical experts worldwide, enabling remote training and collaboration, while maintaining the highest standard of patient care.
Methods
Rezum™ is a minimally invasive therapy for patients with symptomatic benign prostatic hyperplasia (BPH). It is a quick day procedure with proven safety, effectiveness, and durability in clinical outcomes. Leveraging ExpertLink, an expert in Sydney, Australia, remotely proctored 11 Rezum™ procedures in Malaysia in November 2022, supporting five urologists in five hospitals across five states within five hours. Efficient and straightforward procedures such as Rezum™ are well suited to remote proctorship. Through this case study, we quantify the sustainability, equity, and access benefits, illustrating the additional value ExpertLink brings across the healthcare continuum and beyond.
Results
For a proctor traveling from Australia to Malaysia, over 6,500 kilometers and 17 hours travel time is saved, equating to an estimated 1,700-kilogram reduction in CO₂ emissions. Without ExpertLink, a proctor may be away from practice for up to a week. ExpertLink allows for continuity of practice, including consultations and procedures, during this time. For five doctors traveling from Malaysia to Australia for training, an estimated 7,400-kilogram reduction in CO₂ emissions and approximately 85 hours travel time is saved. ExpertLink provided 11 geographically dispersed patients with timely access to treatment and expedited the physician learning curve.
Conclusions
This case study illustrates the value for just one technology on one day. ExpertLink embodies novel elements of value that are not captured in traditional value assessment frameworks. Collaborative effort between stakeholders is needed to broaden the view of value in healthcare, incorporate additional elements of value in existing assessment frameworks, and appropriately recognize this often-uncounted value in decision-making.
Despite growing awareness of the mental health damage caused by air pollution, the epidemiologic evidence on impact of air pollutants on major mental disorders (MDs) remains limited. We aim to explore the impact of various air pollutants on the risk of major MD.
Methods
This prospective study analyzed data from 170 369 participants without depression, anxiety, bipolar disorder, and schizophrenia at baseline. The concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), particulate matter with aerodynamic diameter > 2.5 μm, and ≤ 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were estimated using land-use regression models. The association between air pollutants and incident MD was investigated by Cox proportional hazard model.
Results
During a median follow-up of 10.6 years, 9 004 participants developed MD. Exposure to air pollution in the highest quartile significantly increased the risk of MD compared with the lowest quartile: PM2.5 (hazard ratio [HR]: 1.16, 95% CI: 1.09–1.23), NO2 (HR: 1.12, 95% CI: 1.05–1.19), and NO (HR: 1.10, 95% CI: 1.03–1.17). Subgroup analysis showed that participants with lower income were more likely to experience MD when exposed to air pollution. We also observed joint effects of socioeconomic status or genetic risk with air pollution on the MD risk. For instance, the HR of individuals with the highest genetic risk and highest quartiles of PM2.5 was 1.63 (95% CI: 1.46–1.81) compared to those with the lowest genetic risk and lowest quartiles of PM2.5.
Conclusions
Our findings highlight the importance of air pollution control in alleviating the burden of MD.
Natural infection by Trichinella sp. has been reported in humans and more than 150 species of animals, especially carnivorous and omnivorous mammals. Although the presence of Trichinella sp. infection in wild boars (Sus scrofa) has been documented worldwide, limited information is known about Trichinella circulation in farmed wild boars in China. This study intends to investigate the prevalence of Trichinella sp. in farmed wild boars in China. Seven hundred and sixty-one (761) muscle samples from farmed wild boars were collected in Jilin Province of China from 2017 to 2020. The diaphragm muscles were examined by artificial digestion method. The overall prevalence of Trichinella in farmed wild boars was 0.53% [95% confidence interval (CI): 0.51–0.55]. The average parasite loading was 0.076 ± 0.025 larvae per gram (lpg), and the highest burden was 0.21 lpg in a wild boar from Fusong city. Trichinella spiralis was the only species identified by multiplex polymerase chain reaction. The 5S rDNA inter-genic spacer region of Trichinella was amplified and sequenced. The results showed that the obtained sequence (GenBank accession number: OQ725583) shared 100% identity with the T. spiralis HLJ isolate (GenBank accession number: MH289505). Since the consumption of farmed wild boars is expected to increase in the future, these findings highlight the significance of developing exclusive guidelines for the processing of slaughtered farmed wild boar meat in China.
The liver has multiple functions such as detoxification, metabolism, synthesis and storage. Folate is a water-soluble vitamin B9, which participates in one-carbon transfer reactions, maintains methylation capacity and improves oxidative stress. Folic acid is a synthetic form commonly used as a dietary supplement. The liver is the main organ for storing and metabolising folate/folic acid, and the role of folate/folic acid in liver diseases has been widely studied. Deficiency of folate results in methylation capacity dysfunction and can induce liver disorders. However, adverse effects of excessive use of folic acid on the liver have also been reported. This review aims to explore the mechanism of folate/folic acid in different liver diseases, promote further research on folate/folic acid and contribute to its rational clinical application.
Mythimna separata (Lepidoptera: Noctuidae) is an omnivorous pest that poses a great threat to food security. Insect antimicrobial peptides (AMPs) are small peptides that are important effector molecules of innate immunity. Here, we investigated the role of the AMP cecropin B in the growth, development, and immunity of M. separata. The gene encoding M. separata cecropin B (MscecropinB) was cloned. The expression of MscecropinB was determined in different developmental stages and tissues of M. separata. It was highest in the prepupal stage, followed by the pupal stage. Among larval stages, the highest expression was observed in the fourth instar. Tissue expression analysis of fourth instar larvae showed that MscecropinB was highly expressed in the fat body and haemolymph. An increase in population density led to upregulation of MscecropinB expression. MscecropinB expression was also upregulated by the infection of third and fourth instar M. separata with Beauveria bassiana or Bacillus thuringiensis (Bt). RNA interference (RNAi) targeting MscecropinB inhibited the emergence rate and fecundity of M. separata, and resulted in an increased sensitivity to B. bassiana and Bt. The mortality of M. separata larvae was significantly higher in pathogen plus RNAi-treated M. separata than in controls treated with pathogens only. Our findings indicate that MscecropinB functions in the eclosion and fecundity of M. separata and plays an important role in resistance to infection by B. bassiana and Bt.
Recent measurements of inertial particles in isotropic turbulence (Hammond & Meng, J. Fluid Mech., vol. 921, 2021, A16) revealed surprising extreme clustering of particles at near-contact separations $(r)$, whereby the radial distribution function, $g(r)$, grows from $O(10)$ to $O(10^3)$ with a $(r/a)^{-6}$ scaling (where $a$ is the particle radius), and a surprising upturn of the mean inward particle-pair relative velocity (MIRV). Hydrodynamic interactions (HIs) were proposed to explain the extreme clustering, but despite predicting the correct scaling $(r/a)^{-6}$, the HI theory underpredicted $g(r)$ by at least two orders of magnitude (Bragg et al., J. Fluid Mech., vol. 933, 2022, A31). To further understand the extreme clustering phenomenon and the relevance of HI, we characterize $g(r)$ and particle-pair kinematics for Stokes numbers $0.07 \leq St \leq 3.68$ in a homogeneous isotropic turbulence chamber using three-dimensional (3-D) particle tracking resolved to near–contact. A drift–diffusion equation governing $g(r)$ is presented to investigate the kinematic mechanisms of particle pairs. Measurements in all 24 conditions show that when $r/a\lessapprox 20$, extreme clustering consistently occurs, scaling as $g(r) \sim (r/a)^{-k}$ with $4.5 \leq k \leq 7.6$, which increases with $St$. Here $g(r)$ varies with $St$, particle size, density and polydispersity in ways that HI cannot explain. The extreme clustering region features an inward drift contributed by particle-pair turbophoresis and an inward radial relative acceleration. The latter indicates an interparticle attractive force at these separations that HI also cannot explain. The MIRV turns upward when approaching the extreme clustering region, opposite to direct numerical simulation predictions. These observations further support our previous assessment that extreme clustering arises from particle–particle interactions, but HI is not the main mechanism.
Maternal syphilis not only seriously affects the quality of life of pregnant women themselves but also may cause various adverse pregnancy outcomes (APOs). This study aimed to analyse the association between the related factors and APOs in maternal syphilis. 7,030 pregnant women infected with syphilis in Henan Province between January 2016 and December 2022 were selected as participants. Information on their demographic and clinical characteristics, treatment status, and pregnancy outcomes was collected. Multivariate logistic regression models and chi-squared automatic interaction detector (CHAID) decision tree models were used to analyse the factors associated with APOs. The multivariate logistic regression results showed that the syphilis infection history (OR = 1.207, 95% CI, 1.035–1.409), the occurrence of abnormality during pregnancy (OR = 5.001, 95% CI, 4.203–5.951), not receiving standard treatment (OR = 1.370, 95% CI, 1.095–1.716), not receiving any treatment (OR = 1.313, 95% CI, 1.105–1.559), and a titre ≥1:8 at diagnosis (OR = 1.350, 95%CI, 1.079–1.690) and before delivery (OR = 1.985, 95%CI, 1.463–2.694) were risk factors. A total of six influencing factors of APOs in syphilis-infected women were screened using the CHAID decision tree model. Integrated prevention measures such as early screening, scientific eugenics assessment, and standard syphilis treatment are of great significance in reducing the incidence of APOs for pregnant women infected with syphilis.
Quantitative phase analysis is one of the major applications of X-ray powder diffraction. The essential principle of quantitative phase analysis is that the diffraction intensity of a component phase in a mixture is proportional to its abundance. Nevertheless, the diffraction intensities of the component phases cannot be compared with each other directly since the coherent scattering power per unit cell (or chemical formula) of each component phase is usually different. The coherent scattering power per unit cell of a crystal is well represented by the sum of the squared structure factors, which cannot be calculated directly when the crystal structure data is unavailable. Presented here is a way to approximate the coherent scattering power per unit cell based solely on the unit cell parameters and the chemical contents. This approximation is useful when the atomic coordinates for one or more of the phases in a sample are unavailable. An assessment of the accuracy of the approximation is presented. This assessment indicates that the approximation will likely be within 10% when X-ray powder diffraction data is collected over a sufficient portion of the measurable pattern.
Expanding recent observations by Hammond & Meng (J. Fluid Mech., vol. 921, 2021, A16), we present a range of detailed experimental data of the radial distribution function (r.d.f.) of inertial particles in isotropic turbulence for different Stokes number, $St$, showing that the r.d.f. grows explosively with decreasing separation r, exhibiting $r^{-6}$ scaling as the collision radius is approached, regardless of $St$ or particle radius $a$. To understand such explosive clustering, we correct a number of errors in the theory by Yavuz et al. (Phys. Rev. Lett., vol. 120, 2018, 244504) based on hydrodynamic interactions between pairs of small, weakly inertial particles. A comparison between the corrected theory and the experiment shows that the theory by Yavuz et al. underpredicts the r.d.f. by orders of magnitude. To explain this discrepancy, we explore several alternative mechanisms for this discrepancy that were not included in the theory and show that none of them are likely the explanation. This suggests new, yet-to-be-identified physical mechanisms are at play, requiring further investigation and new theories.
The findings regarding the associations between red meat, fish and poultry consumption, and the metabolic syndrome (Mets) have been inconclusive, and evidence from Chinese populations is scarce. A cross-sectional study was performed to investigate the associations between red meat, fish and poultry consumption, and the prevalence of the Mets and its components among the residents of Suzhou Industrial Park, Suzhou, China. A total of 4424 participants were eligible for the analysis. A logistic regression model was used to estimate the OR and 95 % CI for the prevalence of the Mets and its components according to red meat, fish and poultry consumption. In addition, the data of our cross-sectional study were meta-analysed under a random effects model along with those of published observational studies to generate the summary relative risks (RR) of the associations between the highest v. lowest categories of red meat, fish and poultry consumption and the Mets and its components. In the cross-sectional study, the multivariable-adjusted OR for the highest v. lowest quartiles of consumption was 1·23 (95 % CI 1·02, 1·48) for red meat, 0·83 (95 % CI 0·72, 0·97) for fish and 0·93 (95 % CI 0·74, 1·18) for poultry. In the meta-analysis, the pooled RR for the highest v. lowest categories of consumption was 1·20 (95 % CI 1·06, 1·35) for red meat, 0·88 (95 % CI 0·81, 0·96) for fish and 0·97 (95 % CI 0·85, 1·10) for poultry. The findings of both cross-sectional studies and meta-analyses indicated that the association between fish consumption and the Mets may be partly driven by the inverse association of fish consumption with elevated TAG and reduced HDL-cholesterol and, to a lesser extent, fasting plasma glucose. No clear pattern of associations was observed between red meat or poultry consumption and the components of the Mets. The current findings add weight to the evidence that the Mets may be positively associated with red meat consumption, inversely associated with fish consumption and neutrally associated with poultry consumption.
The Harihada–Chegendalai ophiolitic mélange, which is located between the Bainaimiao arc and the North China Craton, holds significant clues regarding the tectonic setting of the southern margin of the Central Asian Orogenic Belt. The ophiolitic mélange is mainly composed of gabbroic and serpentinized ultramafic rocks. Here, zircon U–Pb dating, in situ zircon Hf isotopic, whole-rock geochemical and in situ mineral chemical data from the ophiolitic mélange are reported. The zircons in the gabbroic rocks yielded concordia U–Pb ages of 450–448 Ma and exhibited slightly positive ϵHf(t) values (0.87–4.34). The geochemical characteristics of the gabbroic rocks indicate that they were generated from a mantle wedge metasomatized by subduction-derived melts from sediments with continental crust contamination, in a fore-arc tectonic setting. These rocks also experienced the accumulation of plagioclase. The geochemical characteristics of the ultramafic rocks and their Cr-spinels indicate that they may constitute part of residual mantle that has experienced a high degree of partial melting and has interacted with fluids/melts released from the subducted slab in the same fore-arc tectonic setting. The ophiolitic mélange may therefore have formed in this fore-arc tectonic setting, resulting from the northward subduction of the South Bainaimiao Ocean beneath the Bainaimiao arc during Late Ordovician time, prior to the collision between the Bainaimiao arc and the North China Craton during the Silurian to Carboniferous periods.
Spodoptera litura is an important pest that causes significant economic damage to numerous crops worldwide. Sex pheromones (SPs) mediate sexual communication in S. litura and show a characteristic degree of rhythmic activity, occurring mainly during the scotophase; however, the specific regulatory mechanisms remain unclear. Here, we employed a genome-wide analysis to identify eight candidate circadian clock genes in S. litura. Sequence characteristics and expression patterns were analyzed. Our results demonstrated that some circadian clock genes might regulate the biosynthesis and perception of SPs by regulating the rhythmic expression of SP biosynthesis-related genes and SP perception-related genes. Interestingly, all potential genes exhibited peak expression in the scotophase, consistent with the SP could mediate courtship and mating behavior in S. litura. Our findings are helpful in elucidating the molecular mechanism by which circadian clock genes regulate sexual communication in S. litura.
Particle collisions in turbulent flow are critical to particle agglomeration and droplet coalescence. The collision kernel can be evaluated by radial distribution function (RDF) and radial relative velocity (RV) between particles at small separations $r$. Previously, the smallest $r$ was limited to roughly the Kolmogorov length $\eta$ due to particle position uncertainty and image overlap. We report a new approach to measuring RDF and RV near contact ($r/a \approx 2.07$, where $a$ is particle radius). Three-dimensional particle tracking velocimetry using the four-pulse shake-the-box algorithm recorded short tracks with the interpolated midpoints registered as particle positions, avoiding image overlap and track mismatch. We measured RDF and RV of inertial particles in a one metre diameter isotropic air turbulence chamber with Taylor Reynolds number $Re_\lambda =324$, $a=12 - 16\ \mathrm {\mu }\textrm {m}$$({\approx }0.12\eta )$ and Stokes number ${\approx }0.7$. At large $r$ the measured RV agrees with the literature, but when $r<20\eta$ the first moment of negative RV starts to increase, reaching 10 times higher values than direct numerical simulations of non-interacting particles. Likewise, RDF scales as $r^{-0.39}$ when $r>\eta$, reflecting the well-known scaling for polydisperse particles, but when $r\lessapprox \eta$, RDF scales as $r^{-6}$, yielding 1000 times higher near-contact RDF than simulations. Such RV enhancement and extreme clustering at small $r$ can be attributed to particle–particle interactions including hydrodynamic interactions, which are not well-understood. Uncertainty analysis substantiates the observed trends. This first-ever simultaneous RDF and RV measurement at small separations provides a clear glimpse into the clustering and relative velocities of particles in turbulence near-contact.
Few studies have been conducted to investigate the association of kidney function decline with the trajectories of homocysteine (Hcy) over time, using repeated measurements. We aimed to investigate the association of kidney function with changes in plasma Hcy levels over time. Data were collected from the Rugao Longevity and Ageing Study. In detail, plasma Hcy and creatinine levels were measured in both waves (waves 2, 3 and 4) during the 3·5-year follow-up (n 1135). Wave 2 was regarded as the baseline survey. The estimated glomerular filtration rate (eGFR) was calculated based on creatinine. Subjects were categorised into four groups according to quartiles of eGFR at baseline. Linear mixed-effect models were used to investigate the association of eGFR with subsequent plasma Hcy levels. The mean eGFR at baseline was 90·84 (sd 11·42) ml/min per 1·73 m2. The mean plasma Hcy level was 14·09 (sd 6·82) at baseline and increased to 16·28 (sd 8·27) and 17·36 (sd 10·39) μmol/l during follow-ups. In the crude model, the interaction between time and eGFR at baseline was significant (β = −0·02, 95 % CI −0·02, −0·01, P = 0·002). After adjusting for confounding factors, a significant relationship remained (β = −0·02, 95 % CI −0·02, −0·01, P = 0·003), suggesting that kidney function decline at baseline was associated with a faster increase in Hcy levels. Kidney function decline is associated with a more pronounced increase in plasma Hcy levels. Further studies with longer follow-up periods and larger sample sizes are needed to validate our findings.
Seaweeds have numerous biologically active ingredients, such as polysaccharides, polyphenols and carotenoids, that are beneficial to human health. Although these benefits might be related to the synthesis, secretion or reabsorption of uric acid, no studies have explored the relationship between seaweeds consumption and hyperuricaemia (HUA) in the general population. The aim of this study was to investigate whether seaweeds consumption is related to HUA in a large-scale adult population. A cross-sectional study was conducted with 32 365 adults (17 328 men and 15 037 women) in Tianjin, People’s Republic of China. Frequency of seaweeds consumption was assessed by a validated self-administered FFQ. HUA was defined as serum uric acid levels >420 μmol/L in men and >350 μmol/L in women. The association between seaweeds consumption and HUA was assessed by multiple logistic regression analysis. Restricted cubic spline functions were used for non-linearity tests. The prevalence of HUA in men and women was 21·17 % and 5·93 %, respectively. After adjustments for potential confounding factors, the OR (95 % CI) for HUA across seaweed consumption (g/1000 kcal per d) were 1·00 (reference) for level 1, 0·91 (95 % CI 0·81, 1·02) for level 2; 0·90 (95 % CI 0·81, 1·01) for level 3; 0·86 (95 % CI 0·78, 0·97) for level 4 in men and 0·90 (95 % CI 0·73, 1·10) for level 2; 0·82 (95 % CI 0·67, 1·00) for level 3; 0·84 (95 % CI 0·68, 1·03) for level 4 in women, respectively. A negative correlation between seaweeds consumption and HUA in males but not in females was observed. Further studies are needed to explore the causal relationship.