We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Emerging research has highlighted a relationship between diet and genetics, suggesting that individuals may benefit more from personalised dietary recommendations based on their genetic risk for cardiovascular disease (CVD)(1,2). This current study aims to: (1) Measure knowledge of genetics among healthcare professionals (HCPs) working in CVD, (2) Identify HCPs’ attitudes to using genetic risk to tailor dietary interventions, and (3) Identify perceived barriers and enablers to implementing genetics to tailor dietary interventions. In a mixed-methods study, Australian HCPs (dietitians and AHPRA registered healthcare professionals) working with people with CVD were invited to complete an anonymous online survey (REDCap) and an optional interview. Recruitment occurred through social media and relevant professional organisations. Survey questions were underpinned by the theoretical domains framework(3) and data was synthesised descriptively. Semi-structured interviews were undertaken via Zoom. Interview responses were analysed using a thematic analysis approach using Braun & Clarke methodology(4). Survey responders (n = 63, 89% female, mean age 42 ± 14 years) were primarily dietitians (83%), with ≥ 10 years of experience (56%) and spent at least 20% of their time working with people with CVD (n = 55, 87%). Approximately half of respondents were aware that genetic testing for CVD exists (n = 36) and always assess family history of CVD (n = 31). Few respondents reported using genetic testing (n = 5, 8%) or felt confident interpreting and using genetic testing (n = 7, 11%) in practice. Respondents were interested in incorporating genetics into their practice to tailor dietary advice (n = 44, 70%). Primary barriers to using genetic testing included financial costs to patients and negative implications for some patients. Almost all respondents agreed genetic testing will allow for more targeted and personalised approaches for prevention and management of CVD (94%). From the interviews (n = 15, 87% female, 43 ± 17 years, 87% dietitian), three themes were identified: (1) ‘On the periphery of care’—HCPs are aware of the role of genetics in health and are interested in knowing more, but it is not yet part of usual practice; (2) ‘A piece of the puzzle’—using genetic testing could be a tool to help personalise, prioritise and motivate participants; and (3) ‘Whose role is it?’—There is uncertainty regarding HCP roles and knowing exactly whose role it is to educate patients. Healthcare professionals are interested in using genetics to tailor dietary advice for CVD, but potential implications for patients need to be considered. Upskilling is required to increase their knowledge and confidence in this area. Further clarity regarding HCP roles in patient education is needed before this can be implemented in practice.
We consider pricing of a specialised critical illness and life insurance contract for breast cancer (BC) risk. We compare (a) an industry-based Markov model with (b) a recently developed semi-Markov model, which accounts for unobserved BC cases and progression through clinical stages of BC, and (c) an alternative Markov model derived from (b). All models are calibrated using population data in England and data from the medical literature. We show that the semi-Markov model aligns best with empirical evidence. We then consider net premiums of specialized life insurance products under various scenarios of cancer diagnosis and treatment. The results show strong dependence on the time spent with diagnosed or undiagnosed pre-metastatic BC. This proves to be significant for refining cancer survival estimates and accurately estimating related age dependence by cancer stage. In contrast, the industry-based model, by overlooking this critical factor, is more sensitive to the model assumptions, underscoring its limitations in cancer estimates.
Imagery-focused therapies within cognitive behavioural therapy are growing in interest and use for people with delusions.
Aims:
This review aimed to examine the outcomes of imagery-focused interventions in people with delusions.
Method:
PsycINFO, PubMed, MEDLINE, Web of Science, EMBASE and CINAHL were systematically searched for studies that included a clinical population with psychosis and delusions who experienced mental imagery. The review was informed by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and quality appraisal of all included papers was completed using the Crowe Critical Appraisal Tool. Information from included texts was extracted and collated in Excel, which informed the narrative synthesis of results.
Results:
Of 2,736 studies identified, eight were eligible for inclusion and rated for quality with an average score of 70.63%. These studies largely supported their aims in reducing levels of distress and intrusiveness of imagery. Four of the eight studies used case series designs, two were randomised controlled trials, and two reported single case studies. It appears that interventions targeting mental imagery were acceptable and well tolerated within a population of people experiencing psychosis and delusions.
Conclusions:
Some therapeutic improvement was reported, although the studies consisted of mainly small sample sizes. Clinical implications include that people with a diagnosis of psychosis can engage with imagery-focused therapeutic interventions with limited adverse events. Future research is needed to tackle existing weaknesses of design and explore the outcomes of imagery interventions within this population in larger samples, under more rigorous methodologies.
This special issue of the Journal of Demographic Economics contains 10 contributions to the academic literature all dealing with longevity risk and capital markets. Draft versions of the papers were presented at Longevity 16: The Sixteenth International Longevity Risk and Capital Markets Solutions Conference that was held in Helsingør near Copenhagen on 13–14 August 2021. It was hosted by PerCent at Copenhagen Business School and the Pensions Institute at City, University of London.
Anorexia nervosa (AN) is a psychiatric disorder associated with marked morbidity. Whilst AN genetic studies could identify novel treatment targets, integration of functional genomics data, including transcriptomics and proteomics, would assist to disentangle correlated signals and reveal causally associated genes.
Methods
We used models of genetically imputed expression and splicing from 14 tissues, leveraging mRNA, protein, and mRNA alternative splicing weights to identify genes, proteins, and transcripts, respectively, associated with AN risk. This was accomplished through transcriptome, proteome, and spliceosome-wide association studies, followed by conditional analysis and finemapping to prioritise candidate causal genes.
Results
We uncovered 134 genes for which genetically predicted mRNA expression was associated with AN after multiple-testing correction, as well as four proteins and 16 alternatively spliced transcripts. Conditional analysis of these significantly associated genes on other proximal association signals resulted in 97 genes independently associated with AN. Moreover, probabilistic finemapping further refined these associations and prioritised putative causal genes. The gene WDR6, for which increased genetically predicted mRNA expression was correlated with AN, was strongly supported by both conditional analyses and finemapping. Pathway analysis of genes revealed by finemapping identified the pathway regulation of immune system process (overlapping genes = MST1, TREX1, PRKAR2A, PROS1) as statistically overrepresented.
Conclusions
We leveraged multiomic datasets to genetically prioritise novel risk genes for AN. Multiple-lines of evidence support that WDR6 is associated with AN, whilst other prioritised genes were enriched within immune related pathways, further supporting the role of the immune system in AN.
Climate change and soil fertility decline are major threats to smallholder farmers' food and nutrition security in southern Africa, and cropping systems that improve soil health are needed to address these challenges. Cropping systems that invest in soil organic matter, such as no-tillage (NT) with crop residue retention, have been proposed as potential solutions. However, a key challenge for assessing the sustainability of NT systems is that soil carbon (C) stocks develop over long timescales, and there is an urgent need to identify trajectory indicators of sustainability and crop productivity. Here we examined the effects of NT as compared with conventional tillage without residue retention on relationships between soil characteristics and maize (Zea mays L.) productivity in long-term on-farm and on-station trials in Zimbabwe. Our results show that relationships between soil characteristics and maize productivity, and the effects of management on these relationships, varied with soil type. Total soil nitrogen (N) and C were strong predictors of maize grain yield and above-ground biomass (i.e., stover) in the clayey soils, but not in the sandy soils, under both managements. This highlights context-specific benefits of management that fosters the accumulation of soil C and N stocks. Despite a strong effect of NT management on soil C and N in sandy soils, this accrual was not sufficient to support increased crop productivity in these soils. We suggest that sandy soils should be the priority target of NT with organic resource inputs interventions in southern Africa, as mineral fertilizer inputs alone will not halt the soil fertility decline. This will require a holistic management approach and input of C in various forms (e.g., biomass from cover crops and tree components, crop residues, in combination with mineral fertilizers). Clayey soils on the other hand have greater buffering capacity against detrimental effects of soil tillage and low C input.
The purpose of this paper is to identify a workhorse mortality model for the adult age range (i.e., excluding the accident hump and younger ages). It applies the “general procedure” (GP) of Hunt & Blake [(2014), North American Actuarial Journal, 18, 116–138] to identify an age-period model that fits the data well before adding in a cohort effect that captures the residual year-of-birth effects arising in the original age-period model. The resulting model is intended to be suitable for a variety of populations, but economises on the number of period effects in comparison with a full implementation of the GP. We estimate the model using two different iterative maximum likelihood (ML) approaches – one Partial ML and the other Full ML – that avoid the need to specify identifiability constraints.
Different mortality rates for different socio-economic groups within a population have been consistently reported throughout the years. In this study, we aim to exploit data from multiple public sources, including highly detailed cause-of-death data from the United States Centers for Disease Control and Prevention, to explore the mortality gap between the better and worse off in the US during the period 1989–2015, using education as a proxy.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.
This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 625, 51 (2005)] who argued that the cyclotron-maser instability occurs in localized magnetized collisionless shocks such as those expected in blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron-maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron-maser instability [Bingham and Cairns, Phys. Plasmas 7, 3089 (2000); Melrose, Rev. Mod. Plasma Phys. 1, 5 (2017)].
This paper updates Living with Mortality published in 2006. It describes how the longevity risk transfer market has developed over the intervening period, and, in particular, how insurance-based solutions – buy-outs, buy-ins and longevity insurance – have triumphed over capital markets solutions that were expected to dominate at the time. Some capital markets solutions – longevity-spread bonds, longevity swaps, q-forwards and tail-risk protection – have come to market, but the volume of business has been disappointingly low. The reason for this is that when market participants compare the index-based solutions of the capital markets with the customised solutions of insurance companies in terms of basis risk, credit risk, regulatory capital, collateral and liquidity, the former perform on balance less favourably despite a lower potential cost. We discuss the importance of stochastic mortality models for forecasting future longevity and examine some applications of these models, e.g. determining the longevity risk premium and estimating regulatory capital relief. The longevity risk transfer market is now beginning to recognise that there is insufficient capacity in the insurance and reinsurance industries to deal fully with demand and new solutions for attracting capital markets investors are now being examined – such as longevity-linked securities and reinsurance sidecars.
We describe the motivation and design details of the ‘Phase II’ upgrade of the Murchison Widefield Array radio telescope. The expansion doubles to 256 the number of antenna tiles deployed in the array. The new antenna tiles enhance the capabilities of the Murchison Widefield Array in several key science areas. Seventy-two of the new tiles are deployed in a regular configuration near the existing array core. These new tiles enhance the surface brightness sensitivity of the array and will improve the ability of the Murchison Widefield Array to estimate the slope of the Epoch of Reionisation power spectrum by a factor of ∼3.5. The remaining 56 tiles are deployed on long baselines, doubling the maximum baseline of the array and improving the array u, v coverage. The improved imaging capabilities will provide an order of magnitude improvement in the noise floor of Murchison Widefield Array continuum images. The upgrade retains all of the features that have underpinned the Murchison Widefield Array’s success (large field of view, snapshot image quality, and pointing agility) and boosts the scientific potential with enhanced imaging capabilities and by enabling new calibration strategies.
The merits of solar coronal at metric-wavelength (MW) radio have long been recognised (e.g. Pick and Vilmer, 2008). High-fidelity solar radio imaging at these frequencies has however remained challenging. On the one hand, dealing with the small spectral and temporal scales of variation in solar radio emission requires a data product capable of tracking the emission simultaneously across time, frequency and morphology. The Fourier imaging nature of interferometry, on the other hand, severely limits the instrumental ability to gather sufficient information to do this with the required fidelity and resolution. Benefiting from the enormous advances in technology the new generation of instruments, like the Murchison Widefield Array (MWA; Tingay et al. (2013), Bowman et al. (2013)), represent a quantum leap in our ability to gather data suitable for radio solar physics.
At low radio frequencies the solar corona is very dynamic in both spectral and temporal domains. To capture the fine details of this complex dynamics, imaging studies at high temporal and spectral resolution are necessary. The advent of the new instruments like the Murchison Widefield Array (MWA; Tingay et al. 2013, Bowman et al. 2013), is now making this possible.
Burn patients are particularly vulnerable to infection, and an estimated half of all burn deaths are due to infections. This study explored risk factors for healthcare-associated infections (HAIs) in adult burn patients.
DESIGN
Retrospective cohort study.
SETTING
Tertiary-care burn center.
PATIENTS
Adults (≥18 years old) admitted with burn injury for at least 2 days between 2004 and 2013.
METHODS
HAIs were determined in real-time by infection preventionists using Centers for Disease Control and Prevention criteria. Multivariable Cox proportional hazards regression was used to estimate the direct effect of each risk factor on time to HAI, with inverse probability of censor weights to address potentially informative censoring. Effect measure modification by burn size was also assessed.
RESULTS
Overall, 4,426 patients met inclusion criteria, and 349 (7.9%) patients had at least 1 HAI within 60 days of admission. Compared to <5% total body surface area (TBSA), patients with 5%–10% TBSA were almost 3 times as likely to acquire an HAI (hazard ratio [HR], 2.92; 95% CI, 1.63–5.23); patients with 10%–20% TBSA were >6 times as likely to acquire an HAI (HR, 6.38; 95% CI, 3.64–11.17); and patients with >20% TBSA were >10 times as likely to acquire an HAI (HR, 10.33; 95% CI, 5.74–18.60). Patients with inhalational injury were 1.5 times as likely to acquire an HAI (HR, 1.61; 95% CI, 1.17–2.22). The effect of inhalational injury (P=.09) appeared to be larger among patients with ≤20% TBSA.
CONCLUSIONS
Larger burns and inhalational injury were associated with increased incidence of HAIs. Future research should use these risk factors to identify potential interventions.
We present techniques developed to calibrate and correct Murchison Widefield Array low-frequency (72–300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degree-scale structure that the Murchison Widefield Array provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the Murchison Widefield Array, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.
Ventilator-associated pneumonia (VAP) is a frequent complication of severe burn injury. Comparing the current ventilator-associated event-possible VAP definition to the pre-2013 VAP definition, we identified considerably fewer VAP cases in our burn ICU. The new definition does not capture many VAP cases that would have been reported using the pre-2013 definition.