We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Synthetic Aperture Radar Interferometry (InSAR) is an active remote sensing method that uses repeated radar scans of the Earth's solid surface to measure relative deformation at centimeter precision over a wide swath. It has revolutionized our understanding of the earthquake cycle, volcanic eruptions, landslides, glacier flow, ice grounding lines, ground fluid injection/withdrawal, underground nuclear tests, and other applications requiring high spatial resolution measurements of ground deformation. This book examines the theory behind and the applications of InSAR for measuring surface deformation. The most recent generation of InSAR satellites have transformed the method from investigating 10's to 100's of SAR images to processing 1000's and 10,000's of images using a wide range of computer facilities. This book is intended for students and researchers in the physical sciences, particularly for those working in geophysics, natural hazards, space geodesy, and remote sensing. This title is also available as Open Access on Cambridge Core.
The recent expansion of cross-cultural research in the social sciences has led to increased discourse on methodological issues involved when studying culturally diverse populations. However, discussions have largely overlooked the challenges of construct validity – ensuring instruments are measuring what they are intended to – in diverse cultural contexts, particularly in developmental research. We contend that cross-cultural developmental research poses distinct problems for ensuring high construct validity owing to the nuances of working with children, and that the standard approach of transporting protocols designed and validated in one population to another risks low construct validity. Drawing upon our own and others’ work, we highlight several challenges to construct validity in the field of cross-cultural developmental research, including (1) lack of cultural and contextual knowledge, (2) dissociating developmental and cultural theory and methods, (3) lack of causal frameworks, (4) superficial and short-term partnerships and collaborations, and (5) culturally inappropriate tools and tests. We provide guidelines for addressing these challenges, including (1) using ethnographic and observational approaches, (2) developing evidence-based causal frameworks, (3) conducting community-engaged and collaborative research, and (4) the application of culture-specific refinements and training. We discuss the need to balance methodological consistency with culture-specific refinements to improve construct validity in cross-cultural developmental research.
Syphilis remains a serious public health problem in mainland China that requires attention, modelling to describe and predict its prevalence patterns can help the government to develop more scientific interventions. The seasonal autoregressive integrated moving average (SARIMA) model, long short-term memory network (LSTM) model, hybrid SARIMA-LSTM model, and hybrid SARIMA-nonlinear auto-regressive models with exogenous inputs (SARIMA-NARX) model were used to simulate the time series data of the syphilis incidence from January 2004 to November 2023 respectively. Compared to the SARIMA, LSTM, and SARIMA-LSTM models, the median absolute deviation (MAD) value of the SARIMA-NARX model decreases by 352.69%, 4.98%, and 3.73%, respectively. The mean absolute percentage error (MAPE) value decreases by 73.7%, 23.46%, and 13.06%, respectively. The root mean square error (RMSE) value decreases by 68.02%, 26.68%, and 23.78%, respectively. The mean absolute error (MAE) value decreases by 70.90%, 23.00%, and 21.80%, respectively. The hybrid SARIMA-NARX and SARIMA-LSTM methods predict syphilis cases more accurately than the basic SARIMA and LSTM methods, so that can be used for governments to develop long-term syphilis prevention and control programs. In addition, the predicted cases still maintain a fairly high level of incidence, so there is an urgent need to develop more comprehensive prevention strategies.
Knowledge graphs have become a common approach for knowledge representation. Yet, the application of graph methodology is elusive due to the sheer number and complexity of knowledge sources. In addition, semantic incompatibilities hinder efforts to harmonize and integrate across these diverse sources. As part of The Biomedical Translator Consortium, we have developed a knowledge graph–based question-answering system designed to augment human reasoning and accelerate translational scientific discovery: the Translator system. We have applied the Translator system to answer biomedical questions in the context of a broad array of diseases and syndromes, including Fanconi anemia, primary ciliary dyskinesia, multiple sclerosis, and others. A variety of collaborative approaches have been used to research and develop the Translator system. One recent approach involved the establishment of a monthly “Question-of-the-Month (QotM) Challenge” series. Herein, we describe the structure of the QotM Challenge; the six challenges that have been conducted to date on drug-induced liver injury, cannabidiol toxicity, coronavirus infection, diabetes, psoriatic arthritis, and ATP1A3-related phenotypes; the scientific insights that have been gleaned during the challenges; and the technical issues that were identified over the course of the challenges and that can now be addressed to foster further development of the prototype Translator system. We close with a discussion on Large Language Models such as ChatGPT and highlight differences between those models and the Translator system.
The interaction of relativistically intense lasers with opaque targets represents a highly non-linear, multi-dimensional parameter space. This limits the utility of sequential 1D scanning of experimental parameters for the optimization of secondary radiation, although to-date this has been the accepted methodology due to low data acquisition rates. High repetition-rate (HRR) lasers augmented by machine learning present a valuable opportunity for efficient source optimization. Here, an automated, HRR-compatible system produced high-fidelity parameter scans, revealing the influence of laser intensity on target pre-heating and proton generation. A closed-loop Bayesian optimization of maximum proton energy, through control of the laser wavefront and target position, produced proton beams with equivalent maximum energy to manually optimized laser pulses but using only 60% of the laser energy. This demonstration of automated optimization of laser-driven proton beams is a crucial step towards deeper physical insight and the construction of future radiation sources.
We present the development and characterization of a high-stability, multi-material, multi-thickness tape-drive target for laser-driven acceleration at repetition rates of up to 100 Hz. The tape surface position was measured to be stable on the sub-micrometre scale, compatible with the high-numerical aperture focusing geometries required to achieve relativistic intensity interactions with the pulse energy available in current multi-Hz and near-future higher repetition-rate lasers ($>$kHz). Long-term drift was characterized at 100 Hz demonstrating suitability for operation over extended periods. The target was continuously operated at up to 5 Hz in a recent experiment for 70,000 shots without intervention by the experimental team, with the exception of tape replacement, producing the largest data-set of relativistically intense laser–solid foil measurements to date. This tape drive provides robust targetry for the generation and study of high-repetition-rate ion beams using next-generation high-power laser systems, also enabling wider applications of laser-driven proton sources.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
Studying phenotypic and genetic characteristics of age at onset (AAO) and polarity at onset (PAO) in bipolar disorder can provide new insights into disease pathology and facilitate the development of screening tools.
Aims
To examine the genetic architecture of AAO and PAO and their association with bipolar disorder disease characteristics.
Method
Genome-wide association studies (GWASs) and polygenic score (PGS) analyses of AAO (n = 12 977) and PAO (n = 6773) were conducted in patients with bipolar disorder from 34 cohorts and a replication sample (n = 2237). The association of onset with disease characteristics was investigated in two of these cohorts.
Results
Earlier AAO was associated with a higher probability of psychotic symptoms, suicidality, lower educational attainment, not living together and fewer episodes. Depressive onset correlated with suicidality and manic onset correlated with delusions and manic episodes. Systematic differences in AAO between cohorts and continents of origin were observed. This was also reflected in single-nucleotide variant-based heritability estimates, with higher heritabilities for stricter onset definitions. Increased PGS for autism spectrum disorder (β = −0.34 years, s.e. = 0.08), major depression (β = −0.34 years, s.e. = 0.08), schizophrenia (β = −0.39 years, s.e. = 0.08), and educational attainment (β = −0.31 years, s.e. = 0.08) were associated with an earlier AAO. The AAO GWAS identified one significant locus, but this finding did not replicate. Neither GWAS nor PGS analyses yielded significant associations with PAO.
Conclusions
AAO and PAO are associated with indicators of bipolar disorder severity. Individuals with an earlier onset show an increased polygenic liability for a broad spectrum of psychiatric traits. Systematic differences in AAO across cohorts, continents and phenotype definitions introduce significant heterogeneity, affecting analyses.
Dry wind-tunnel (DWT) flutter test systems model the unsteady distributed aerodynamic force using various electromagnetic exciters. They can be used to test the aeroelastic and aeroservoelastic stability of smart aircraft or high-speed flight vehicles. A new parameterised modelling method at the full system level based on the generalised force equivalence for DWT flutter systems is proposed herein. The full system model includes the structural dynamic model, electromechanical coupling model and fast aerodynamic computation model. An optimisation search method is applied to determine the best locations for measurement and excitation by introducing Fisher’s information matrix. The feasibility and accuracy of the proposed system-level numerical DWT modelling method have been validated for a plate aeroelastic model with four exciters/transducers. The effects of key parameters including the number of exciters, the control time delay, the noise interference and the electrical parameters of the electromagnetic exciter model have also been investigated. The numerical and experimental results indicate that the proposed modelling method achieves good accuracy (with deviations of less than 1.5% from simulations and 4.5% from experimental test results for the flutter speed) and robust performance even in uncertain environments with a 10% noise level.
Lifestyle interventions are an important and viable approach for preventing cognitive deficits. However, the results of studies on alcohol, coffee and tea consumption in relation to cognitive decline have been divergent, likely due to confounds from dose–response effects. This meta-analysis aimed to find the dose–response relationship between alcohol, coffee or tea consumption and cognitive deficits.
Methods
Prospective cohort studies or nested case-control studies in a cohort investigating the risk factors of cognitive deficits were searched in PubMed, Embase, the Cochrane and Web of Science up to 4th June 2020. Two authors searched the databases and extracted the data independently. We also assessed the quality of the studies with the Newcastle-Ottawa scale. Stata 15.0 software was used to perform model estimation and plot the linear or nonlinear dose–response relationship graphs.
Results
The search identified 29 prospective studies from America, Japan, China and some European countries. The dose–response relationships showed that compared to non-drinkers, low consumption (<11 g/day) of alcohol could reduce the risk of cognitive deficits or only dementias, but there was no significant effect of heavier drinking (>11 g/day). Low consumption of coffee reduced the risk of any cognitive deficit (<2.8 cups/day) or dementia (<2.3 cups/day). Green tea consumption was a significant protective factor for cognitive health (relative risk, 0.94; 95% confidence intervals, 0.92–0.97), with one cup of tea per day brings a 6% reduction in risk of cognitive deficits.
Conclusions
Light consumption of alcohol (<11 g/day) and coffee (<2.8 cups/day) was associated with reduced risk of cognitive deficits. Cognitive benefits of green tea consumption increased with the daily consumption.
Previous studies have revealed associations of meteorological factors with tuberculosis (TB) cases. However, few studies have examined their lag effects on TB cases. This study was aimed to analyse nonlinear lag effects of meteorological factors on the number of TB notifications in Hong Kong. Using a 22-year consecutive surveillance data in Hong Kong, we examined the association of monthly average temperature and relative humidity with temporal dynamics of the monthly number of TB notifications using a distributed lag nonlinear models combined with a Poisson regression. The relative risks (RRs) of TB notifications were >1.15 as monthly average temperatures were between 16.3 and 17.3 °C at lagged 13–15 months, reaching the peak risk of 1.18 (95% confidence interval (CI) 1.02–1.35) when it was 16.8 °C at lagged 14 months. The RRs of TB notifications were >1.05 as relative humidities of 60.0–63.6% at lagged 9–11 months expanded to 68.0–71.0% at lagged 12–17 months, reaching the highest risk of 1.06 (95% CI 1.01–1.11) when it was 69.0% at lagged 13 months. The nonlinear and delayed effects of average temperature and relative humidity on TB epidemic were identified, which may provide a practical reference for improving the TB warning system.
Developing alternatives to antibiotics is an urgent need in livestock production. Antimicrobial peptides (AMPs) are regarded as powerful antibiotic substitutes (ASs) because AMPs have broad-spectrum antimicrobial activities and growth-promoting ability. Here, we aimed to comprehensively assess the effects of AMPs on the growth performance, diarrhea rate, intestinal morphology and immunity of healthy or challenged piglets, compared with an antibiotics group or negative control group. We performed a set of meta-analyses of feeding trials from database inception to 27 May 2019. Among the 1379 identified studies, 20 were included in our meta-analyses (56 arms and 4067 piglets). The meta-analyses revealed that (1) compared with the negative control group, AMPs significantly improved the healthy piglets’ average daily gain (ADG), average daily feed intake (ADFI), gain : feed ratio (G/F), levels of immune globulin (Ig) IgM and IgG, and intestinal villus height : crypt depth ratio (V/C) (P < 0.05). Meanwhile, AMPs significantly increased the challenged piglets’ ADG, ADFI, G/F and V/C of the jejunum and ileum, and notably deceased the diarrhea rate (P < 0.05); (2) compared with antibiotics group, the effects of AMPs were slightly weaker than those of antibiotics in the healthy piglets, but AMPs have similar effects to those of antibiotics in challenged piglets. In a higher purity, the optimal dose of AMPs may be approximately 0.01%. Our findings indicate that AMPs can improve piglet growth performance, enhance immunity, benefit intestinal morphology and decrease the diarrheal rate. AMPs could be great ASs especially under infection conditions.
This double-blind (DB), relapse prevention, phase-3 study was designed to evaluate the efficacy and safety of paliperidone palmitate long-acting 3-monthly formulation (PP3M) versus placebo in delaying time-to-relapse of schizophrenia symptoms.
Methods
Adults (18-70 years old) with schizophrenia (DSM-IV-TR) were treated with PP (17-week, open-label [OL] transition phase: 50, 75, 100, or 150 mg eq, once-monthly, [PP1M]; 12-week OL maintenance phase: 3.5-fold PP1M stabilized dose, single injection), and then randomized (1:1) to PP3M fixed doses (175, 263, 350 or 525 mg eq.) or placebo.
Results
305/506 patients enrolled were randomized (PP3M: n=160; placebo: n=145); majority were men (75%), white (59%), mean age 38.4 years. Interim analysis results favored PP3M vs. placebo (p = 0.0002, two-sided log-rank test; HR: 3.45, 95% CI: 1.73; 6.88); median time-to-relapse was 274 days in placebo and not estimable in PP3M group. Final results were consistent with interim analysis. Both PANSS total score and CGI-S score showed a significant effect over time in PP3M- vs. placebo-treated patients (p>0.001). 330/506 (65.2%) patients in OL phase and 183/305 (60.0%) in DB phase (PP3M: 61.9% vs. placebo: 57.9%) had ≥1 treatment-emergent adverse event (TEAE). The TEAEs noted more frequently in PP3M-vs. placebo (DB phase) were nasopharyngitis (5.6% vs. 1.4%), weight gain (8.8% vs. 3.4%), headache (8.8% vs.4.1%) and akathisia (4.4% vs. 0.7%).
Conclusion
Compared with placebo, PP3M significantly delayed time to first relapse in patients with schizophrenia, previously treated for 4 months with PP1M. PP3M was tolerable with a safety profile generally consistent with other marketed formulations of paliperidone.
The association between gray matter and cognitive dysfunction in young major depression remains unclear.
Objectives:
To investigate the brain gray matter and the correlation with cognitive function in first-episode, treatment-naive patients with major depressive disorder (MDD).
Aims:
To explore brain structural pathological mechanisms of cognitive impairment in MDD.
Methods:
46 MDD aged 18-45 year and 46 controls were assessed by Wisconsin Card Sorting Test (WCST) and Trail making test (TMT). Then, 30 patients and 30 controls were obtained by MRI scan.
Results:
The total number of errors, number of preservative errors, random errors of WSCT in MDD were significantly more than that in controls, and the completion time in the TMT-A and TMT-B was longer than that in controls. MDD showed significant less gray matter volumns than controls in frontal lobe (right precentral gyrus, bilateral superior frontal gyrus and right middle frontal gyrus), parietal lobe (left postcentral gyrus, left paracentral lobule, and bilateral precuneus), temporal lobe (right superior temporal gyrus), and occipital lobe (left superior occipital gyrus). There was a significant negative correlation between left postcentral gyrus and left superior occipital gyrus gray matter density and the TMT-B completion time (r=-0.462, P=0.017; r=-0.448, P=0.022).
Conclusions:
The first-episode MDD patient exhibiteded cognitive impairment and showed significant lower gray matter density than controls in frontal lobe, parietal lobe, temporal lobe, occipital lobe. Decreased gray matter density in left postcentral gyrus and left superior occipital gyrus may be involved in the executive dysfunction.
Healthcare personnel (HCP) were recruited to provide serum samples, which were tested for antibodies against Ebola or Lassa virus to evaluate for asymptomatic seroconversion.
Setting:
From 2014 to 2016, 4 patients with Ebola virus disease (EVD) and 1 patient with Lassa fever (LF) were treated in the Serious Communicable Diseases Unit (SCDU) at Emory University Hospital. Strict infection control and clinical biosafety practices were implemented to prevent nosocomial transmission of EVD or LF to HCP.
Participants:
All personnel who entered the SCDU who were required to measure their temperatures and complete a symptom questionnaire twice daily were eligible.
Results:
No employee developed symptomatic EVD or LF. EVD and LF antibody studies were performed on sera samples from 42 HCP. The 6 participants who had received investigational vaccination with a chimpanzee adenovirus type 3 vectored Ebola glycoprotein vaccine had high antibody titers to Ebola glycoprotein, but none had a response to Ebola nucleoprotein or VP40, or a response to LF antigens.
Conclusions:
Patients infected with filoviruses and arenaviruses can be managed successfully without causing occupation-related symptomatic or asymptomatic infections. Meticulous attention to infection control and clinical biosafety practices by highly motivated, trained staff is critical to the safe care of patients with an infection from a special pathogen.
Crystal structure and electronic structure of YMnO3 were investigated by X-ray diffraction and transmission electron microscopy related techniques. According to the density of states (DOS), the individual interband transitions to energy loss peaks in the low energy loss spectrum were assigned. The hybridization of O 2p with Mn 3d and Y 4d analyzed by the partial DOS was critical to the ferroelectric nature of YMnO3. From the simulation of the energy loss near-edge structure, the fine structure of O K-edge was in good agreement with the experimental spectrum. The valence state of Mn (+3) in YMnO3 was determined by a comparison between experiment and calculations.
Replicate radiocarbon (14C) measurements of organic and inorganic control samples, with known Fraction Modern values in the range Fm = 0–1.5 and mass range 6 μg–2 mg carbon, are used to determine both the mass and radiocarbon content of the blank carbon introduced during sample processing and measurement in our laboratory. These data are used to model, separately for organic and inorganic samples, the blank contribution and subsequently “blank correct” measured unknowns in the mass range 25–100 μg. Data, formulas, and an assessment of the precision and accuracy of the blank correction are presented.