We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The colonisation of Australia around 250 years ago resulted in significant disruptive changes to the lifestyle and diet of Aboriginal and Torres Strait Islander peoples. Traditional foods high in micronutrients, including vitamin D, have been largely replaced with energy-dense foods(1). Sun exposure—a primary source of vitamin D—may be reduced due to changes in clothing and housing structure(2). Consequently, there is a high prevalence of vitamin D deficiency (serum 25-hydroxyvitamin D concentration < 50 nmol/L) and low vitamin D intake among Aboriginal and Torres Strait Islander peoples(2,3). There is a need for a public health strategy to improve vitamin D status. Since few foods naturally contain vitamin D (e.g., fish, eggs, and meat), food fortification could be a suitable public health strategy to increase vitamin D intake without changing consumption behaviour. In Australia, besides food mandated for fortification (e.g., edible oil spreads), few foods permitted for voluntary fortification are routinely fortified. We aimed to model vitamin D food fortification scenarios among Aboriginal and Torres Strait Islander peoples. We used nationally representative food consumption data from the 2012–2013 National Aboriginal and Torres Strait Islander Nutrition and Physical Activity Survey (n = 4,109) and analytical vitamin D food composition data(4) to model four food fortification scenarios. Scenario 1 modelled the addition of the maximum permitted amount of vitamin D to all foods permitted for fortification in Australia: i) dairy products and alternatives, ii) butter/margarine/oil spreads, iii) formulated beverages (e.g., water with added sugar, vitamins and minerals), and iv) selected ready-to-eat breakfast cereal. Scenarios 2a–c included vitamin D concentrations higher than permitted in fluid milks/alternatives (1 μg/day) and butter/margarine/oil spreads (20 μg/day). Scenario 2a: i) dairy products and alternatives, ii) butter/margarine/oil spreads, iii) formulated beverages. Scenario 2b: as per Scenario 2a plus selected ready-to-eat breakfast cereals. Scenario 2c: as per Scenario 2b plus bread (not permitted for vitamin D fortification in Australia). Vitamin D fortification of a range of staple foods could potentially increase vitamin D intake among Aboriginal and Torres Strait Islander peoples by ~3–6 μg/day. Scenario 2c showed the highest potential median vitamin D intake increase from baseline of 2 μg/day to ~8 μg/day. Across all scenarios, the vitamin D intake of all participants remained below the Australian Tolerable Upper Intake Level of 80 μg/day. Our findings demonstrated that vitamin D fortification of a range of staple foods could potentially increase vitamin D intake among Aboriginal and Torres Strait Islander peoples in Australia. However, the most impactful vitamin D fortification strategy (Scenario 2c) would require a revision of the Australia New Zealand Food Standards Code to permit the addition of higher amounts of vitamin D than currently permitted and the inclusion of bread as a food vehicle for fortification.
Major depressive disorder (MDD) is a tremendous global disease burden and the leading cause of disability worldwide. Unfortunately, individuals diagnosed with MDD typically experience a delayed response to traditional antidepressants and many do not adequately respond to pharmacotherapy, even after multiple trials. The critical need for novel antidepressant treatments has led to a recent resurgence in the clinical application of psychedelics, and intravenous ketamine, which has been investigated as a rapid-acting treatment for treatment resistant depression (TRD) as well acute suicidal ideation and behavior. However, variations in the type and quality of experimental design as well as a range of treatment outcomes in clinical trials of ketamine make interpretation of this large body of literature challenging.
Objectives
This umbrella review aims to advance our understanding of the effectiveness of intravenous ketamine as a pharmacotherapy for TRD by providing a systematic, quantitative, large-scale synthesis of the empirical literature.
Methods
We performed a comprehensive PubMed search for peer-reviewed meta-analyses of primary studies of intravenous ketamine used in the treatment of TRD. Meta-analysis and primary studies were then screened by two independent coding teams according to pre-established inclusion criteria as well as PRISMA and METRICS guidelines. We then employed metaumbrella, a statistical package developed in R, to perform effect size calculations and conversions as well as statistical tests.
Results
In a large-scale analysis of 1,182 participants across 51 primary studies, repeated-dose administration of intravenous ketamine demonstrated statistically significant effects (p<0.05) compared to placebo-controlled as well as other experimental conditions in patients with TRD, as measured by standardized clinician-administered and self-report depression symptom severity scales.
Conclusions
This study provides large-scale, quantitative support for the effectiveness of intravenous, repeated-dose ketamine as a therapy for TRD and a report of the relative effectiveness of several treatment parameters across a large and rapidly growing literature. Future investigations should use similar analytic tools to examine evidence-stratified conditions and the comparative effectiveness of other routes of administration and treatment schedules as well as the moderating influence of other clinical and demographic variables on the effectiveness of ketamine on TRD and suicidal ideation and behavior.
Panic disorder (PD) and agoraphobia (AG) are highly comorbid anxiety disorders with an increasing prevalence that have a significant clinical and public health impact but are not adequately recognized and treated. Although the current functional neuroimaging literature has documented a range of neural abnormalities in these disorders, primary studies are often not sufficiently powered and their findings have been inconsistent.
Objectives
This meta-analysis aims to advance our understanding of the neural underpinnings of PD and AG by identifying the most robust patterns of differential neural activation that differentiate individuals diagnosed with one of or both these disorders from age-matched healthy controls.
Methods
We conducted a comprehensive literature search in the PubMed database for all peer-reviewed, whole-brain, task-based functional magnetic resonance imaging (fMRI) activation studies that compared adults diagnosed with PD and/or AG with age-matched healthy controls. Each of these articles was screened by two independent coding teams using formal inclusion criteria and according to current PRISMA guidelines. We then performed a voxelwise, whole-brain, meta-analytic comparison of PD/AG participants with age-matched healthy controls using multilevel kernel density analysis (MKDA) with ensemble thresholding (p<0.05-0.0001) to minimize cluster size detection bias and 10,000 Monte Carlo simulations to correct for multiple comparisons.
Results
With data from 34 primary studies and a substantial sample size (N=2138), PD/AG participants, relative to age-matched healthy controls, exhibited a reliable pattern of statistically significant, (p<.05-0.0001; FWE-corrected) abnormal neural activation in multiple brain regions of the cerebral cortex and basal ganglia across a variety of experimental tasks.
Conclusions
In this meta-analysis we found robust patterns of differential neural activation in participants diagnosed with PD/AG relative to age-matched healthy controls. These findings advance our understanding of the neural underpinnings of PD and AG and inform the development of brain-based clinical interventions such as non-invasive brain stimulation (NIBS) and treatment prediction and matching algorithms. Future studies should also investigate the neural similarities and differences between PD and AG to increase our understanding of possible differences in their etiology, diagnosis, and treatment.
There has been rapidly growing interest in understanding the pharmaceutical and clinical properties of psychedelic and dissociative drugs, with a particular focus on ketamine. This compound, long known for its anesthetic and dissociative properties, has garnered attention due to its potential to rapidly alleviate symptoms of depression, especially in individuals with treatment-resistant depression (TRD) or acute suicidal ideation or behavior. However, while ketamine’s psychopharmacological effects are increasingly well-documented, the specific patterns of its neural impact remain a subject of exploration and basic questions remain about its effects on functional activation in both clinical and healthy populations.
Objectives
This meta-analysis seeks to contribute to the evolving landscape of neuroscience research on dissociative drugs such as ketamine by comprehensively examining the effects of acute ketamine administration on neural activation, as measured by functional magnetic resonance imaging (fMRI), in healthy participants.
Methods
We conducted a meta-analysis of existing fMRI activation studies of ketamine using multilevel kernel density analysis (MKDA). Following a comprehensive PubMed search, we quantitatively synthesized all published primary fMRI whole-brain activation studies of the effects of ketamine in healthy subjects with no overlapping samples (N=18). This approach also incorporated ensemble thresholding (α=0.05-0.0001) to minimize cluster-size detection bias and Monte Carlo simulations to correct for multiple comparisons.
Results
Our meta-analysis revealed statistically significant (p<0.05-0.0001; FWE-corrected) alterations in neural activation in multiple cortical and subcortical regions following the administration of ketamine to healthy participants (N=306).
Conclusions
These results offer valuable insights into the functional neuroanatomical effects caused by acute ketamine administration. These findings may also inform development of therapeutic applications of ketamine for various psychiatric and neurological conditions. Future studies should investigate the neural effects of ketamine administration, including both short-term and long-term effects, in clinical populations and their relation to clinical and functional improvements.
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent psychiatric condition that frequently originates in early development and is associated with a variety of functional impairments. Despite a large functional neuroimaging literature on ADHD, our understanding of the neural basis of this disorder remains limited, and existing primary studies on the topic include somewhat divergent results.
Objectives
The present meta-analysis aims to advance our understanding of the neural basis of ADHD by identifying the most statistically robust patterns of abnormal neural activation throughout the whole-brain in individuals diagnosed with ADHD compared to age-matched healthy controls.
Methods
We conducted a meta-analysis of task-based functional magnetic resonance imaging (fMRI) activation studies of ADHD. This included, according to PRISMA guidelines, a comprehensive PubMed search and predetermined inclusion criteria as well as two independent coding teams who evaluated studies and included all task-based, whole-brain, fMRI activation studies that compared participants diagnosed with ADHD to age-matched healthy controls. We then performed multilevel kernel density analysis (MKDA) a well-established, whole-brain, voxelwise approach that quantitatively combines existing primary fMRI studies, with ensemble thresholding (p<0.05-0.0001) and multiple comparisons correction.
Results
Participants diagnosed with ADHD (N=1,550), relative to age-matched healthy controls (N=1,340), exhibited statistically significant (p<0.05-0.0001; FWE-corrected) patterns of abnormal activation in multiple brains of the cerebral cortex and basal ganglia across a variety of cognitive control tasks.
Conclusions
This study advances our understanding of the neural basis of ADHD and may aid in the development of new brain-based clinical interventions as well as diagnostic tools and treatment matching protocols for patients with ADHD. Future studies should also investigate the similarities and differences in neural signatures between ADHD and other highly comorbid psychiatric disorders.
Compared to older men, Alzheimer’s Disease (AD) is more common in older women, who present with higher levels of pathological tau and accelerated memory decline, although it is unclear why. Furthermore, sleep complaints increase with age, with older women reporting worse sleep quality than older men, and past studies have linked sleep disturbances to tau. Because of the life-long “verbal memory advantage” in women over men, nonverbal memory may more accurately reflect tau burden in women since sex differences are not as apparent. Here, in a sample of older women in the Women Inflammation Tau Study (WITS), we examined the associations between subjective sleep quality, tau in temporal regions, and memory, and whether tau would be more strongly related to nonverbal memory than verbal memory.
Participants and Methods:
In WITS, women have elevated AD polygenic hazard scores and have mild cognitive impairment as indicated by the telephone Montreal Cognitive Assessment (range:13-20). This preliminary sample of 20 women (aged 72.0±3.7) completed the Pittsburgh Sleep Quality Index (PSQI) to assess sleep quality in 7 domains of sleep health over the past month. A global score (range:0-21) is calculated, with a score >5 indicative of being a poor sleeper. Participants also underwent positron emission tomography (PET) with the 18F-MK6240 tracer and T1-weighted magnetic resonance imagining (MRI) to determine tau deposition. Standardized uptake value ratio (SUVR) was calculated using the inferior cerebellum grey matter as the reference region, which was created from Automated Anatomic Labeling atlas in native T1 space. The region of interest (ROI) was a composite meta-temporal region. The Rey Auditory Verbal Learning Test (RAVLT) and Logical Memory (LM) Story A and B were administered to assess verbal memory. The Brief Visuospatial Memory Test-Revised (BVMT-R) was administered to assess nonverbal memory. Analysis focused on the delayed recall scores from the memory tests. Partial correlation was used to analyze the associations between PSQI global score, tau-PET SUVR in meta-temporal ROI, and memory delayed recall scores, while adjusting for age and education years.
Results:
8 women were poor sleepers indicated by the PSQI global score (mean:4.9±2). Worse subjective sleep quality was associated with greater tau in meta-temporal ROI (r=0.63, p=0.005) and lower BVMT-R delayed recall (r=-0.46, p=0.05). Sleep quality was not significantly related to either RAVLT or LM delayed recall (all p’s>0.40). Tau in meta-temporal ROI was not significantly associated with nonverbal (p=0.23) or verbal memory (all p’s>0.40) delayed recall.
Conclusions:
In this preliminary analysis, subjective sleep quality was linked to temporal tau deposition and nonverbal memory delayed recall, which may suggest that poor sleep exacerbates pathogenesis of tau that leads to memory difficulties in older women at increased risk for AD. Although tau was not significantly related to any memory measures, we will explore whether tau will mediate or moderate the relationship between sleep quality and nonverbal memory once we are powered to do so. Continual evaluation and treatment of sleep may be imperative in mitigating AD risk, especially for older women, however, future longitudinal studies will be necessary to investigate this.
Knowledge graphs have become a common approach for knowledge representation. Yet, the application of graph methodology is elusive due to the sheer number and complexity of knowledge sources. In addition, semantic incompatibilities hinder efforts to harmonize and integrate across these diverse sources. As part of The Biomedical Translator Consortium, we have developed a knowledge graph–based question-answering system designed to augment human reasoning and accelerate translational scientific discovery: the Translator system. We have applied the Translator system to answer biomedical questions in the context of a broad array of diseases and syndromes, including Fanconi anemia, primary ciliary dyskinesia, multiple sclerosis, and others. A variety of collaborative approaches have been used to research and develop the Translator system. One recent approach involved the establishment of a monthly “Question-of-the-Month (QotM) Challenge” series. Herein, we describe the structure of the QotM Challenge; the six challenges that have been conducted to date on drug-induced liver injury, cannabidiol toxicity, coronavirus infection, diabetes, psoriatic arthritis, and ATP1A3-related phenotypes; the scientific insights that have been gleaned during the challenges; and the technical issues that were identified over the course of the challenges and that can now be addressed to foster further development of the prototype Translator system. We close with a discussion on Large Language Models such as ChatGPT and highlight differences between those models and the Translator system.
Generalized anxiety disorder (GAD) is a highly prevalent mental illness that is associated with clinically significant distress, functional impairment, and poor emotional regulation. Primary functional magnetic resonance imaging (fMRI) studies of GAD report neural abnormalities in comparison to healthy controls. However, many of these findings in the primary literature are inconsistent, and it is unclear whether they are specific to GAD or shared transdiagnostically across related disorders.
Objectives
This meta-analysis seeks to establish the most reliable neural abnormalities observed in individuals with GAD, as reported in the primary fMRI activation literature.
Methods
We conducted an exhaustive literature search in PubMed to identify primary studies that met our pre-specified inclusion criteria and then extracted relevant data from primary, whole-brain fMRI activation studies of GAD that reported coordinates in Talairach or MNI space. We then used multilevel kernel density analysis (MKDA) with ensemble thresholding to examine the differences between adults with GAD and healthy controls in order to identify brain regions that reached statistical significance across primary studies.
Results
Patients with GAD showed statistically significant (α=0.05–0.0001; family-wise-error-rate corrected) neural activation in various regions of the cerebral cortex and basal ganglia across a variety of experimental tasks.
Conclusions
These results inform our understanding of the neural basis of GAD and are interpreted using a frontolimbic model of anxiety as well as specific clinical symptoms of this disorder and its relation to other mood and anxiety disorders. These results also suggest possible novel targets for emerging neurostimulation therapies (e.g., transcranial magnetic stimulation) and may be used to advance our understanding of the effects of current pharmaceutical treatments and ways to improve treatment selection and symptom-targeting for patients diagnosed with GAD.
Functional magnetic resonance imaging (fMRI) has been used to identify the neural activity of both youth and adults diagnosed with major depressive disorder (MDD) in comparison to healthy age-matched controls. Previously reported abnormalities in depressed youth appear to mostly align with those found in depressed adults; however, some of the reported aberrant brain activity in youth has not been consistent with what is observed in adults, and to our knowledge there has not yet been a formal, quantitative comparison of these two groups. In addition, it is not known whether these observed differences between youth and adults with depression are attributable to developmental age or length-of-illness.
Objectives
The aim of this study is to elucidate the similarities and differences in patterns of abnormal neural activity between adults and youth diagnosed with MDD and to then determine whether these observed differences are due to either developmental age or length-of-illness.
Methods
We used multilevel kernel density analysis (MKDA) with ensemble thresholding and triple subtraction to separately determine neural abnormalities throughout the whole brain in primary studies of depressed youth and depressed adults and then directly compare the observed abnormalities between each of those age groups. We then conducted further comparisons between multiple subgroups to control for age and length-of-illness and thereby determine the source of the observed differences between youth and adults with depression.
Results
Adults and youth diagnosed with MDD demonstrated reliable, differential patterns of abnormal activation in various brain regions throughout the cerebral cortex that are statistically significant (p < .05; FWE-corrected). In addition, several of these brain regions that exhibited differential patterns of neural activation between the two age groups can be reliably attributed to either developmental age or length-of-illness.
Conclusions
These findings indicate that there are common and disparate patterns of brain activity between youth and adults with MDD, several of which can be reliably attributed to developmental age or length-of-illness. These results expand our understanding of the neural basis of depression across development and course of illness and may be used to inform the development of new, age-specific clinical treatments as well as prevention strategies for this disorder.
Major depressive disorder (MDD) is a highly prevalent mental illness that frequently originates in early development and is pervasive during adolescence. Despite its high prevalence and early age of onset, our understanding of the potentially unique neural basis of MDD in this age group is still not well understood, and the existing primary literature on the topic includes many new and divergent results. This limited understanding of MDD in youth presents a critical need to further investigate its neural basis in youth and presents an opportunity to also improve clinical treatments that target its neural abnormalities.
Objectives
The present study aims to advance our understanding of the neural basis of MDD in youth by identifying abnormal functional activation in various brain regions compared with healthy controls.
Methods
We conducted a meta-analysis of functional magnetic resonance imaging (fMRI) studies of MDD by using a well-established method, multilevel kernel density analysis (MKDA) with ensemble thresholding, to quantitatively combine all existing whole-brain fMRI studies of MDD in youth compared with healthy controls. This method involves a voxel-wise, whole-brain approach, that compares neural activation of patients with MDD to age-matched healthy controls across variations of task-based conditions, which we subcategorize into affective processing, executive functioning, positive valence, negative valence, and symptom provocation tasks.
Results
Youth with MDD exhibited statistically significant (p<0.05; FWE-corrected) hyperactivation and hypoactivation in multiple brain regions compared with age-matched healthy controls. These results include significant effects that are stable across various tasks as well as some that appear to depend on task conditions.
Conclusions
This study strengthens our understanding of the neural basis of MDD in youth and may also be used to help identify possible similarities and differences between youth and adults with depression. It may also help inform the development of new treatment interventions and tools for predicting unique treatment responses in youth with depression.
Curiosity toward the effects of psychedelic drugs on neural activation has increased due to their potential therapeutic benefits, particularly serotonergic psychedelics that act as 5-HT2A receptor agonists such as LSD, psilocybin, and MDMA. However, the pattern of their effects on neural activity in various brain regions in both clinical and healthy populations is still not well understood, and primary studies addressing this issue have sometimes generated inconsistent results.
Objectives
The present meta-analysis aims to advance our understanding of the most widely used serotonergic psychedelics – LSD, psilocybin, and MDMA – by examining their effects on the functional activation throughout the whole brain among both clinical and healthy participants.
Methods
We conducted this meta-analysis by applying multilevel kernel density analysis (MKDA) with ensemble thresholding to quantitatively combine existing functional magnetic resonance imaging (fMRI) studies that examined whole-brain functional activation of clinical or healthy participants who were administered a serotonergic psychedelic.
Results
Serotonergic psychedelics, including LSD, psilocybin, and MDMA, exhibited significant effects (α=0.05) on neural activation in several regions throughout the cerebral cortex and basal ganglia, including effects that may be common across and unique within each drug.
Conclusions
These observed effects of serotonergic psychedelics on neural activity advance our understanding of the functional neuroanatomy associated with their administration and may inform future studies of both their adverse and therapeutic effects, including emerging clinical applications for the treatment of several psychiatric disorders.
Major depressive disorder (MDD) is a highly prevalent mental illness that often first occurs or persists into adulthood and is considered the leading cause of disability and disease burden worldwide. Unfortunately, individuals diagnosed with MDD who seek treatment often experience limited symptom relief and may not achieve long-term remission, which is due in part to our limited understanding of its underlying pathophysiology. Many studies that use task-based functional magnetic resonance imaging (fMRI) have found abnormal activation in brain regions in adults diagnosed with MDD, but those findings are often inconsistent; in addition, previous meta-analyses that quantitatively integrate this large body literature have found conflicting results.
Objectives
This meta-analysis aims to advance our understanding of the neural basis of MDD in adults, as measured by fMRI activation studies, and address inconsistencies and discrepancies in the empirical literature.
Methods
We employed multilevel kernel density analysis (MKDA) with ensemble thresholding, a well-established method for voxel-wise, whole-brain meta-analyses, to conduct a quantitative comparison of all relevant primary fMRI activation studies of adult patients with MDD compared to age-matched healthy controls.
Results
We found that adults with MDD exhibited a reliable pattern of statistically significant (p<0.05; FWE-corrected) hyperactivation and hypoactivation in several brain regions compared to age-matched healthy controls across a variety of experimental tasks.
Conclusions
This study supports previous findings that there is reliable neural basis of MDD that can be detected across heterogenous fMRI studies. These results can be used to inform development of promising treatments for MDD, including protocols for personalized interventions. They also provide the opportunity for additional studies to examine the specificity of these effects among various populations-of-interest, including youth vs. adults with depression as well as other related mood and anxiety disorders.
Cook’s Petrel Pterodroma cookii is an endemic New Zealand seabird that has experienced a large range decline since the arrival of humans and now only breeds on two offshore islands (Te Hauturu-o-Toi/Little Barrier Island and Whenua Hou/Codfish Island) at the extreme ends of its former distribution. Morphological, behavioural, and mitochondrial cytochrome oxidase 1 (CO1) sequence data led a previous study to recognise the two extant populations as distinct conservation management units. Here, we further examine the genetic relationship between the extant populations using two nuclear introns (β-fibint7 and PAX). Using one mitochondrial locus (CO1), we also investigate the past distribution of a single nucleotide polymorphism (SNP) that differentiates the modern populations using bone and museum skins sourced from within its former range across New Zealand’s North and South Islands. We found significant population genetic structure between the two extant Cook’s Petrel populations for one of the two nuclear introns (β-fibint7). The mitochondrial DNA CO1 analysis indicated that the SNP variant found in the Codfish Island population was formerly widely distributed across both the North and South Islands, whereas the Little Barrier Island variant was detected only in North Island samples. We argue that these combined data support the recognition of the extant populations as different subspecies. Previous names for these taxa exist, thus Cook’s Petrel from Little Barrier Island becomes Pterodroma cookii cookii and Cook’s Petrel from Codfish Island becomes P. c. orientalis. Furthermore, we suggest that both genetic and non-genetic data should be taken into consideration when planning future mainland translocations. Namely, any translocations on the South Island should be sourced from Codfish Island and future translocations on the North Island should continue to be sourced from Little Barrier Island only.
Audits play a critical role in maintaining the integrity of observational cohort data. While previous work has validated the audit process, sending trained auditors to sites (“travel-audits”) can be costly. We investigate the efficacy of training sites to conduct “self-audits.”
Methods:
In 2017, eight research groups in the Caribbean, Central, and South America network for HIV Epidemiology each audited a subset of their patient records randomly selected by the data coordinating center at Vanderbilt. Designated investigators at each site compared abstracted research data to the original clinical source documents and captured audit findings electronically. Additionally, two Vanderbilt investigators performed on-site travel-audits at three randomly selected sites (one adult and two pediatric) in late summer 2017.
Results:
Self- and travel-auditors, respectively, reported that 93% and 92% of 8919 data entries, captured across 28 unique clinical variables on 65 patients, were entered correctly. Across all entries, 8409 (94%) received the same assessment from self- and travel-auditors (7988 correct and 421 incorrect). Of 421 entries mutually assessed as “incorrect,” 304 (82%) were corrected by both self- and travel-auditors and 250 of these (72%) received the same corrections. Reason for changing antiretroviral therapy (ART) regimen, ART end date, viral load value, CD4%, and HIV diagnosis date had the most mismatched corrections.
Conclusions:
With similar overall error rates, findings suggest that data audits conducted by trained local investigators could provide an alternative to on-site audits by external auditors to ensure continued data quality. However, discrepancies observed between corrections illustrate challenges in determining correct values even with audits.
Surface mass balance (SMB) is the net input of mass on a glacier's upper surface, composed of snow deposition, melt and erosion processes, and is a major contributor to the overall mass balance. Pine Island Glacier (PIG) in West Antarctica has been dynamically imbalanced since the early 1990s, indicating that discharge of solid ice into the oceans exceeds snow deposition. However, observations of the SMB pattern on the fast flowing regions are scarce, and are potentially affected by the firn's strain history. Here, we present new observations from radar-derived stratigraphy and a relatively dense network of firn cores, collected along a ~900 km traverse of PIG. Between 1986 and 2014, the SMB along the traverse was 0.505 m w.e. a−1 on average with a gradient of higher snow deposition in the South-West compared with the North-East of the catchment. We show that along ~80% of the traverse the strain history amounts to a misestimation of SMB below the nominal uncertainty, but can exceed it by a factor 5 in places, making it a significant correction to the SMB estimate locally. We find that the strain correction changes the basin-wide SMB by ~0.7 Gt a−1 and thus forms a negligible (1%) correction to the glacier's total SMB.
We aimed to quantify the proportion of people receiving care for HIV-infection that are 50 years or older (older HIV patients) in Latin America and the Caribbean between 2000 and 2015 and to estimate the contribution to the growth of this population of people enrolled before (<50yo) and after 50 years old (yo) (⩾50yo). We used a series of repeated, cross-sectional measurements over time in the Caribbean, Central and South American network (CCASAnet) cohort. We estimated the percentage of patients retained in care each year that were older HIV patients. For every calendar year, we divided patients into two groups: those who enrolled before age 50 and after age 50. We used logistic regression models to estimate the change in the proportion of older HIV patients between 2000 and 2015. The percentage of CCASAnet HIV patients over 50 years had a threefold increase (8% to 24%) between 2000 and 2015. Most of the growth of this population can be explained by the increasing proportion of people that enrolled before 50 years and aged in care. These changes will impact needs of care for people living with HIV, due to multiple comorbidities and high risk of disability associated with aging.
By applying Principal Components Analysis (PCA) to solar magnetic synoptic maps in cycle 21-23 obtained with Wilcox Solar Observatory we derived analytical expressions for two principal components and their summary curve of solar magnetic field oscillations defined by dipole magnetic sources. In this paper we extrapolate backwards three millennia the summary curve describing solar activity and compare it with the relevant historic data. The extrapolated summary curve shows a remarkable resemblance to the sunspot and terrestrial activity reported in the past millennia: the Maunder Minimum (1645-1715), Wolf minimum (1200), Oort minimum (1010-1050), Homer minimum (800-900 BC), the medieval warm period (900-1200), the Roman warm period (400-10BC). We note that Sporer minimum (1460-1550) derived from the increased abundance of isotope Δ14C is likely produced by a strong increase of galactic cosmic rays caused by a supernova Vela Junior occurred in the Southern hemisphere.
Post-traumatic stress disorder (PTSD) is often associated with attention allocation and emotional regulation difficulties, but the brain dynamics underlying these deficits are unknown. The emotional Stroop task (EST) is an ideal means to monitor these difficulties, because participants are asked to attend to non-emotional aspects of the stimuli. In this study, we used magnetoencephalography (MEG) and the EST to monitor attention allocation and emotional regulation during the processing of emotionally charged stimuli in combat veterans with and without PTSD.
Method
A total of 31 veterans with PTSD and 20 without PTSD performed the EST during MEG. Three categories of stimuli were used, including combat-related, generally threatening and neutral words. MEG data were imaged in the time-frequency domain and the network dynamics were probed for differences in processing threatening and non-threatening words.
Results
Behaviorally, veterans with PTSD were significantly slower in responding to combat-related relative to neutral and generally threatening words. Veterans without PTSD exhibited no significant differences in responding to the three different word types. Neurophysiologically, we found a significant three-way interaction between group, word type and time period across multiple brain regions. Follow-up testing indicated stronger theta-frequency (4–8 Hz) responses in the right ventral prefrontal (0.4–0.8 s) and superior temporal cortices (0.6–0.8 s) of veterans without PTSD compared with those with PTSD during the processing of combat-related words.
Conclusions
Our data indicated that veterans with PTSD exhibited deficits in attention allocation and emotional regulation when processing trauma cues, while those without PTSD were able to regulate emotion by directing attention away from threat.
The glaciological work of six expeditions from Makerere University College to the Ruwenzori between December 1957 and July 1961 is described and some results are given.
The history of glaciological research in the Ruwenzori mountain range is outlined and the present ice distribution is described. A variety of evidence is presented to illustrate the pattern of change over the last 50 years, and all the glaciers examined are shown to have been drastically reduced in size, with an apparent acceleration in melting since the 1940’s. Six glaciers are known to have disappeared completely, whilst several others have split into smaller units.
A detailed survey of the Speke Glacier on Mount Speke was made, and calculations show that if the present trends continue all the ice below 4,573 in. on Mount Speke can he expected to disappear within the next 40 years.
The Elena and Savoia Glaciers on Mount Stanley and the Moore Glacier on Mount Baker are described, and recessional rates for each glacier are calculated. Measurements of the ice movement of the Elena Glacier demonstrate that it is still a fairly active glacier, although the Moore Glacier is thought to be completely stagnant. Other scientific measurements of glaciological significance include subglacial temperatures for the Elena Glacier, melt-water flow rates from the Speke Glacier and solar radiation measurements for several stations near the Ruwenzori ice margins.
The wake behind a circular cylinder in Mach 4 flow is examined experimentally in the Reynolds number range $2\times 10^{4}$ to $5\times 10^{5}$. Periodic oscillations of the sliplines in the wake are observed. The Strouhal number of the oscillations based on the diameter of the cylinder is found to increase monotonically from 0.30 to 0.50 with increasing Reynolds number. If the Strouhal number is formed using the length of the sliplines, however, it has a constant value of approximately 0.48 for all Reynolds numbers studied. This scaling indicates that the oscillations in supersonic flow are likely driven by acoustic signals propagating back and forth through the subsonic region between the separation points on the cylinder and the neck where the sliplines converge, unlike in subsonic flow where oscillations are caused by vortices shed from the cylinder surface.