We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this study, morphological and molecular features were used to identify a new Steinernema sp. from Chhattisgarh, India. Morphological and molecular features provide evidence for placing the new species into the “bicornutum” clade. The new species is characterized by the following morphological features: infective juveniles with a body length of 587 (494–671) μm; a distance from the anterior end to excretory pore of 46 (43–50) μm; a distance from anterior end to nerve ring of 72 μm (61–85 μm); and E% of 88 (77–97). The first-generation males are characterised by 27 genital papillae and very short spicules, with a length of 61 μm (53–67) μm. The SW% and GS% ratio of S. shori n. sp. are 139 (107–190) and 75 (62–90), respectively. The new species is further characterized by sequences of the internal transcribed spacer and partial 28S regions of the ribosomal DNA. Phylogenetic analyses show that S. shori n. sp. is most closely related to S. abbasi, S. kandii, and S. yirgalemense.
Invasive shrubs like Tamarix spp. are ecological and economic threats in the U.S. Southwest and West, as they displace native vegetation and require innovative management approaches. Tamarix control typically consists of chemical and mechanical removal, but these methods may have negative ecological and economic impacts. Tamarisk leaf beetles (Diorhabda spp.) released for biocontrol are becoming increasingly established within Western river systems and can provide additional control. Previous Diorhabda research studied integration of beetle herbivory with fire and with mechanical management methods and herbicide application (e.g., cut stump), but little research has been conducted on integration with mowing and foliar herbicide application, which cause minimal soil disturbance. At Caballo Reservoir in southern New Mexico, we addressed the question: “How does Tamarix respond to chemical and mechanical control when Diorhabda is well established at a site?” A field experiment was conducted by integrating mowing and foliar imazapyr herbicide at standard (3.6 g ae L−1 [0.75% v/v] and low (1.2 g ae L−1 [0.25% v/v]) rates with herbivory. Treatments were replicated five times at two sites—a dry site and a seasonally flooded site. Beetles and larvae were counted and green foliage was measured over 2 yr. Mowing and full herbicide rates reduced green foliage and limited regrowth compared with low herbicide rate and beetles alone. Integrating conventional management such as mowing and herbicide with biocontrol could improve Tamarix management by providing stresses in addition to herbivory alone.
The effect of actuator damage on a helicopter rotor with an IBC based primary control system is studied. Such a system eliminates the swashplate and can be accomplished by trailing-edge flaps, active twist or full authority IBC, especially with smart material actuators. Damage to the collective, longitudinal and lateral cyclic are simulated for one blade, both individually and in combinations ranging from partial damage to complete failure. Numerical results are obtained using a dissimilar blade aeroelastic analysis based on finite elements in space and time for hover and forward speed conditions. It is found that the helicopter can be trimmed for all cases with all three controls having failed on the blade with actuator damage thereby showing that the IBC actuated rotor can survive an actuator failure and can be reconfigured by the pilot using the controls on the other blades. However, in case the collective fails and the longitudinal cyclic is present, there are problems in achieving trim at high damage levels at high forward speeds. Physical explanations of this phenomenon are given. The response (especially flap) for the damaged rotor blades can become high and 1/rev and 2/rev are transmitted by the reconfigured rotor to the hub. Results show that IBC based primary controls provide redundancy which can improve the survivability of a helicopter in case of actuator failure in one blade.
The relationship between subjective memory complaints (SM) and objective memory (OM) performance in aging has been variably characterized in a substantial literature, to date. In particular, cross-sectional studies often observe weak or no associations. We investigated whether subjective memory complaints and objectively measured cognition influence each other over time, and if so, which is the stronger pathway of change—objective to subjective, or subjective to objective—or whether they are both important. Using bivariate latent change score modeling in data from a population study (N=1980) over 5 annual assessment cycles, we tested four corresponding hypotheses: (1) no coupling between SM and OM over time; (2) SM as leading indicator of change in OM; (3) OM as leading indicator of change in SM; (4) dual coupling over time, with both SM and OM leading subsequent change in the other. We also extended objective cognition to two other domains, language and executive functions. The dual-coupling models best fit the data for all three objective cognitive domains. The SM–OM temporal dynamics differ qualitatively compared to other domains, potentially reflecting changes in insight and self-awareness specific to memory impairment. Subjective memory and objective cognition reciprocally influence each other over time. The temporal dynamics between subjective and objective cognition in aging are nuanced, and must be carefully disentangled to shed light on the underlying processes. (JINS, 2015, 21, 732–742)
Serum concentrations of anti-hippocampal antibodies and in vitro production of the lymphokine interleukin-2 (IL-2) in response to phytohaemagglutinin (PHA) stimulation were determined using an enzyme immunoassay in 49 schizophrenic patients and 41 healthy controls. Decrease in IL-2 production, a finding frequently associated with many autoimmune diseases, was associated with an elevation in anti-hippocampal antibody optical density (AHA-OD) in schizophrenic patients. Although some control subjects had elevated antibody levels, this elevation was not associated with decreased IL-2 production. Low IL-2 production is well known to be a state marker associated with active autoimmune disease. We suggest that production of hippocampal antibody is a trait marker of vulnerability to autoimmune diseases. Thus, our finding of low IL-2 production in patients with high concentrations of hippocampal antibody is compatible with the possibility that such patients have an ongoing autoimmune process.
The electronic properties of working nanocrystalline silicon (nc-Si:H) solar cell devices with conversion efficiencies up to 8.6% were studied using junction capacitance methods. The set of devices examined were deposited on both specular stainless steel substrates and Ag/ZnO textured back reflectors. These devices included nc-Si:H grown under constant H2 dilution, and also with profiled H2 dilution to control the crystallite sizes and volume fraction. Transient photocapacitance and transient photocurrent spectroscopies were used to obtain sub-band-gap optical spectra. A comparison of these two kinds of spectra also allowed us to deduce the minority carrier collection fractions as a function of temperature and light-induced degradation. Light-soaking was found to cause a distinct decrease in minority carrier collection, as well as a consistent decrease in defects responding to drive-level capacitance profiling. A tentative microscopic model is proposed that accounts for these degradation effects in nc-Si:H.
Giardia, a common enteric protozoan parasite is a well-recognized cause of diarrhoeal illness. The detailed mechanism of diarrhoea due to this infection is not well understood. A 58 kDa enterotoxin (ESP) was purified from the excretory–secretory product of the parasite. The present study was designed to investigate the mode of action of this enterotoxin of G. lamblia in mice enterocytes. An increase in cyclic adenosine monophosphate level, as well as intracellular Ca2+ concentration, was observed in the ESP-triggered enterocytes. The levels of phospholipase Cγ1 and inositol triphosphate were found to be upregulated. The activity of protein kinase C (PKC) in the enterocytes was also enhanced following stimulation with the ESP. An increase in the level of reactive oxygen species in ESP-stimulated cells correlated well with the decline in the activity of antioxidant enzymes (superoxide dismutase and catalase). The significantly high levels of nitrite and citrulline indicated the generation of reactive nitrogen intermediates in the ESP-triggered enterocytes. Thus, ESP could induce cross-talk among the different signal transduction pathways in the enterocytes, which could together bring about a common secretory response.
The mechanism by which Giardia lamblia exerts its pathogenicity is likely to be multifactorial. A 58 kDa enterotoxin was purified and characterized from the excretory–secretory product (ESP) of the parasite (Kaur et al. 2001). In the present study an attempt has been made to elucidate the mechanism of action of the ESP, a potentially important enterotoxin. A 41 kDa glycoprotein was identified in the mouse enterocyte membrane fraction with which the ESP interacted in a GM1-specific manner. The GTPase activity was reduced in enterocytes stimulated with the ESP, resulting in an increase in the level of adenylate cyclase-dependent cyclic adenosine monophosphate (cAMP). The activity of protein kinase A (PKA) in the enterocytes was also upregulated after ESP treatment. Ultimately, a significant increase in intracellular Ca2+ concentration and decrease in cytosolic Cl− level were noticed in ESP-stimulated mouse enterocytes. Thus it is possible that the enterotoxic ESP could bind to the 41 kDa glycoprotein (receptor?) on the enterocytes and activate the G-protein-mediated signal transduction pathway resulting in alteration of electrolyte transport.
Photoconductive Semiconductor Switches (PCSS) were fabricated in planar structures on high resistivity 4H-SiC and conductive 6H-SiC and tested at DC Bias voltages up to 1000 V. The gap spacing between the electrodes is 1 mm. The average on-state resistance and the ratio of on-state to off-state currents were about 20 Ω and 3×1011 for 4H-SiC, and 60 Ω and 6.6×103 for 6H-SiC, respectively. The typical maximum switch current at 1000 V is about 49 A for 4H-SiC. Photoconductivity pulse widths for all applied voltages were 8-10 ns. The observed performance is due in part to the removal of the surface damage by high temperature H2 etching and surface preparation. Atomic Force Microscopy (AFM) images revealed that very good surface morphology, atomic layer flatness and large step widths were achieved with this surface treatment and these atomically smooth surfaces likely contributed to the excellent switching performance of these devices.
We have examined the electronic properties of intrinsic amorphous silicon films as a function of deposition rate, and compared these with the performance of companion solar cell p-i-n devices. The device efficiency in the light-soaked state was strongly inversely correlated with growth rate. Film properties were evaluated in both the as-grown and light soaked states using drive-level capacitance profiling and transient photocapacitance spectroscopy. Although deep defect densities measured by drive-level capacitance profiling did not vary significantly between samples, the magnitude of the defect band deduced via transient photocapacitance spectroscopy was well correlated with device performance. Possible reasons for this discrepancy are discussed. Urbach energies were also correlated with film growth rate.
We have carried out measurements to try to correlate amorphous silicon film properties with companion solar cell device performance. The dc plasma deposited intrinsic films were prepared with various hydrogen dilution levels, and increasing power levels to increase growth rate. The electronic properties were determined using admittance spectroscopy and drive-level capacitance profiling (DLCP) techniques as well as transient photocapacitance and photocurrent spectroscopy. Cell and film performance were explored in both as-grown and light-soaked states. We observed that, although cell performance decreased systematiclly with increasing growth rate, it depended on factors other than the deep defect density in the matched films. On the other hand, we did observe that increases in defect density caused by the light-induced degradation led to fairly predictable decreases in the cell fill factors.
Light induced changes to 1 sun degraded steady state (DSS) have been investigated on hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells and corresponding films fabricated with and without hydrogen dilution of silane. Striking similarities are found for the degradation kinetics, between the electron mobility lifetime (μτ) products and the corresponding fill factors (FF). These correlations that exist for both intrinsic materials at temperatures between 25 and 100°C, are present for the DSS as well as in the kinetics, which exihibit distinctly different dependence on temperature. No such correlations are present between μτ, FF and densities of D0 defects, measured with subgap absorption α(E) at 1.2eV, and electron spin resonance (ESR). The creation of non-D0 defects is also clearly indicated by the temperature dependence of the kinetics and the changes in the shape of α(E) with the results suggesting the presence of more than one mechanism for the creation of light induced defects associated with the Staebler-Wronski effect (SWE).
In this study, we optimize the plasma-enhanced chemical vapor deposition (PECVD) process to achieve high-density nucleation of single-phase microcrystalline silicon (µc-Si:H) p-type layers on zinc oxide (ZnO) surfaces at 200 °C for applications in amorphous silicon (a-Si:H) based p-i-n solar cells. The phase evolution of the Si:H p-layers on specular ZnO-coated glass substrates is characterized using real time spectroscopic ellipsometry (RTSE). The resulting evolutionary phase diagram depicts the accumulated film thickness at which the amorphous-to- microcrystalline (→µc) transition occurs versus the H2-dilution ratio, with all other parameters fixed. Guided by this diagram, we find that high-density microcrystallite nucleation and fully- coalesced µc-Si:H p-layers ∼100 Å thick can be obtained on specular ZnO at 200 Å using a B(CH3)3 doping gas flow ratio of D=[B(CH3)3]/[SiH4]=0.02 and an optimized H2-dilution ratio of R=[H2]/SiH4]=200. Lower H2-dilution levels (R<160) generate purely amorphous or mixed (a+µc) phases, and higher dilution levels (R>200) generate longer induction periods, low-density nucleation, and incomplete coalescence of microcrystallites even after ∼100 Å. The time evolution of the microstructure and the resulting dielectric functions as determined by RTSE are similar for optimized µc-Si:H p-layers ∼200 Å thick prepared on specular and textured ZnO surfaces, indicating that the substrate texturing does not necessitate process reoptimization.
Intrinsic a-Si:H samples were grown with and without hydrogen (H2) dilution of silane at different growth rates. We find that the dilution leads to a considerable reduction in the defect density, in particular at high growth rates. The defect density is particularly low for samples grown using H2 dilution conditions at growth rates as high as 10 Å/sec. Using transient photocapacitance measurements we find evidence for a small concentration of microcrystallites embedded in the amorphous films. An increase in the microcrystalline fraction correlates with a decrease in the defect density.
Although high α-linolenic acid flaxseed (Linum usitatissitmum) is one of the richest dietary sources of α- linolenic acid and is also a good source of soluble fibre mucilage, it is relatively unstudied in human nutrition. Healthy female volunteers consumed 50 g ground, raw flaxseed/d for 4 weeks which provided 12–13% of energy intake (24–25 g/100 g total fat). Flaxseed raised α-linolenic acid and long-chain n-3 fatty acids in both plasma and erythrocyte lipids, as well as raising urinary thiocyanate excretion 2.2- fold. Flaxseed also lowered serum total cholesterol by 9 % and low-density-lipoprotein-cholesterol by 18%. Changes in plasma α-linolenic acid were equivalent when 12 g α-linolenic acid/d was provided as raw flaxseed flour (50 g/d) or flaxseed oil (20 g/d) suggesting high bioavailability of α-linolenic acid from ground flaxseed. Test meals containing 50 g carbohydrate from flaxseed or 25 g flaxseed mucilage each significantly decreased postprandial blood glucose responses by 27%. Malondialdehyde levels in muffins containing 15 g flaxseed oil or flour/kg were similar to those in wheat-flour muffins. Cyanogenic glycosides (linamarin, linustatin, neolinustatin) were highest in extracted flaxseed mucilage but were not detected in baked muffins containing 150 g flaxseed/kg. We conclude that up to 50 g high-α-linolenic acid flaxseed/d is palatable, safe and may be nutritionally beneficial in humans by raising n-3 fatty acids in plasma and erythrocytes and by decreasing postprandial glucose responses.
Several novel oxides have been prepared by the decomposition of carbonate precursors of calcite structure of the general formulas Mn1−xMxCO3 (M = Mg,Co,Cd), Ca1−xMx'CO3, and Ca1−x−yMxMy”CO3