We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
How do international crises unfold? We conceptualize international relations as a strategic chess game between adversaries and develop a systematic way to measure pieces, moves, and gambits accurately and consistently over a hundred years of history. We introduce a new ontology and dataset of international events called ICBe based on a very high-quality corpus of narratives from the International Crisis Behavior (ICB) Project. We demonstrate that ICBe has higher coverage, recall, and precision than existing state of the art datasets and conduct two detailed case studies of the Cuban Missile Crisis (1962) and the Crimea-Donbas Crisis (2014). We further introduce two new event visualizations (event iconography and crisis maps), an automated benchmark for measuring event recall using natural language processing (synthetic narratives), and an ontology reconstruction task for objectively measuring event precision. We make the data, supplementary appendix, replication material, and visualizations of every historical episode available at a companion website crisisevents.org.
The research objectives were to evaluate factors that influence Canadian secondary school students’ milk and milk alternatives (MMA) consumption and to explore associations through age and gender lenses.
Design:
A qualitative design was used, consisting of semi-structured interviews and photo-elicitation methods. Analysis was guided by the Theory of Planned Behaviour (TPB). Deductive and inductive thematic analyses were used to generate themes, charting data based on attributes such as gender and age.
Setting:
Interviews were held virtually or via telephone.
Participants:
Participants were twenty-eight high school students from Ontario, Canada, diverse in terms of gender and age.
Results:
Both desirable and undesirable beliefs about the health outcomes of consuming MMA were commonly discussed. These included health benefits such as strong bones, muscular strength, and growth, and health consequences like unwanted skin conditions, weight gain, and diseases. While boys and girls associated MMA consumption with muscular strength, boys predominantly considered this favourable, while girls discussed outcomes like unwanted skin conditions and weight gain more often. Adolescents’ perspectives on taste/perceived enjoyment, environmentally friendly choices and animal welfare also influenced their MMA preferences. Parental influences were most cited among social factors, which appeared to be stronger during early adolescence. Factors involving cost, time and accessibility affected adolescents’ beliefs about how difficult it was to consume MMA.
Conclusions:
Recommendations for shifting attitudes towards MMA are provided to address unfavourable beliefs towards these products. Interventions to increase MMA consumption among adolescents should include parents and address cost barriers.
Although chemical and radiological agents cause toxicity through different mechanisms, the multiorgan injuries caused by these threats share similarities that convene on the level of basic biological responses. This publication will discuss these areas of convergence and explore “multi-utility” approaches that could be leveraged to address common injury mechanisms underlying actions of chemical and radiological agents in a threat-agnostic manner. In addition, we will provide an overview of the current state of radiological and chemical threat research, discuss the US Government’s efforts toward medical preparedness, and identify potential areas for collaboration geared toward enhancing preparedness and response against radiological and chemical threats. We also will discuss previous regulatory experience to provide insight on how to navigate regulatory paths for US Food and Drug Administration (FDA) approval/licensure/clearance for products addressing chemical or radiological/nuclear threats. This publication follows a 2022 trans-agency meeting titled, “Overlapping Science in Radiation and Sulfur Mustard Exposures of Skin and Lung: Consideration of Models, Mechanisms, Organ Systems, and Medical Countermeasures,” sponsored by the National Institute of Allergy and Infectious Diseases (NIAID), a part of the National Institutes of Health (NIH). Discussions from this meeting explored the overlapping nature of radiation and chemical injury and spurred increased interest in how preparedness for one threat leads to preparedness for the other. Herein, subject matter experts from the NIAID and the Biomedical Advanced Research and Development Authority (BARDA), a part of the Administration for Strategic Preparedness and Response (ASPR), summarize the knowledge gained from recently funded biomedical research, as well as insights from the 2022 meeting. These topics include identification of common areas for collaboration, potential use of biomarkers of injury to identify injuries caused by both hazards, and common and widely available treatments that could treat damage caused by radiological or chemical threats.
Rapid increase in the hectarage and agricultural systems that use cover cropping for soil conservation and improvement, soil moisture retention, and weed management has highlighted the need to develop formal breeding programs for cover crop species. Cereal rye (Secale cereale L.) is preferred by many growers due to high biomass production and weed-suppression potential, which is believed to be partially due to allelopathy. Rye germplasm exhibits large variability in allelopathic activity, which could be used to breed rye with enhanced weed suppression. Here, we provide an overview of rye history and breeding and describe a strategy to develop rye lines with increased allelopathic activity. The discussion focuses on ways to deal with important challenges to achieving this goal, including obligate cross-pollination and its consequent high segregation levels and the need to quantify allelopathic activity under field conditions. This review seeks to encourage weed scientists to collaborate with plant breeders and promote the development of cover crop cultivars better suited to reduce weed populations.
As the configuration of global environmental governance has become more complex over the past fifty years, numerous scholars have underscored the importance of understanding the transnational networks of public, private, and nonprofit organizations that comprise it. Collaborative Event Ethnography (CEE) is a relational methodology that aims to capture the dynamics of these constantly shifting networks. CEE draws on multisited, team, and institutional ethnography to assemble teams of researchers to study major international conferences, which offer important political spaces where these networks can be observed. Drawing on more than ten years of experience with CEE, we argue that strong approaches to collaboration offer rich opportunities for analyses of global environmental governance. In CEE, researchers collaborate on all aspects of the research process, from research design to analysis to writing. The aim of this chapter is to introduce CEE, providing a history of its development, reviewing the benefits and challenges of CEE, reflecting on the theoretical insights generated through CEE in relation to understanding environmental agreement-making, and offering practical guidance for researchers interested in using the methodology. Going beyond CEE, the chapter also considers collaboration in the context of the broader scholarly landscape.
We present the third data release from the Parkes Pulsar Timing Array (PPTA) project. The release contains observations of 32 pulsars obtained using the 64-m Parkes ‘Murriyang’ radio telescope. The data span is up to 18 yr with a typical cadence of 3 weeks. This data release is formed by combining an updated version of our second data release with $\sim$3 yr of more recent data primarily obtained using an ultra-wide-bandwidth receiver system that operates between 704 and 4032 MHz. We provide calibrated pulse profiles, flux density dynamic spectra, pulse times of arrival, and initial pulsar timing models. We describe methods for processing such wide-bandwidth observations and compare this data release with our previous release.
White kidney bean extract (WKBE) is a nutraceutical often advocated as an anti-obesity agent. The main proposed mechanism for these effects is alpha-amylase inhibition, thereby slowing carbohydrate digestion and absorption. Thus, it is possible that WKBE could impact the gut microbiota and modulate gut health. We investigated the effects of supplementing 20 healthy adults with WKBE for 1 week in a randomised, placebo-controlled crossover trial on the composition of the gut microbiota, gastrointestinal (GI) inflammation (faecal calprotectin), GI symptoms, and stool habits. We conducted in vitro experiments and used a gut model system to explore potential inhibition of alpha-amylase. We gained qualitative insight into participant experiences of using WKBE via focus groups. WKBE supplementation decreased the relative abundance of Bacteroidetes and increased that of Firmicutes, however, there were no significant differences in post-intervention gut microbiota measurements between the WKBE and control. There were no significant effects on GI inflammation or symptoms related to constipation, or stool consistency or frequency. Our in vitro and gut model system analyses showed no effects of WKBE on alpha-amylase activity. Our findings suggest that WKBE may modulate the gut microbiota in healthy adults, however, the underlying mechanism is unlikely due to active site inhibition of alpha-amylase.
In Paper I, we presented an overview of the Southern-sky MWA Rapid Two-metre (SMART) survey, including the survey design and search pipeline. While the combination of MWA’s large field-of-view and the voltage capture system brings a survey speed of ${\sim} 450\, {\textrm{deg}}^{2}\,\textrm{h}^{-1}$, the progression of the survey relies on the availability of compact configuration of the Phase II array. Over the past few years, by taking advantage of multiple windows of opportunity when the compact configuration was available, we have advanced the survey to 75% of the planned sky coverage. To date, about 10% of the data collected thus far have been processed for a first-pass search, where 10 min of observation is processed for dispersion measures out to 250 ${\textrm{pc cm}}^{-3}$, to realise a shallow survey that is largely sensitive to long-period pulsars. The ongoing analysis has led to two new pulsar discoveries, as well as an independent discovery and a rediscovery of a previously incorrectly characterised pulsar, all from ${\sim} 3\% $ of the data for which candidate scrutiny is completed. In this sequel to Paper I, we describe the strategies for further detailed follow-up including improved sky localisation and convergence to timing solution, and illustrate them using example pulsar discoveries. The processing has also led to re-detection of 120 pulsars in the SMART observing band, bringing the total number of pulsars detected to date with the MWA to 180, and these are used to assess the search sensitivity of current processing pipelines. The planned second-pass (deep survey) processing is expected to yield a three-fold increase in sensitivity for long-period pulsars, and a substantial improvement to millisecond pulsars by adopting optimal de-dispersion plans. The SMART survey will complement the highly successful Parkes High Time Resolution Universe survey at 1.2–1.5 GHz, and inform future large survey efforts such as those planned with the low-frequency Square Kilometre Array (SKA-Low).
We present an overview of the Southern-sky MWA Rapid Two-metre (SMART) pulsar survey that exploits the Murchison Widefield Array’s large field of view and voltage-capture system to survey the sky south of 30$^{\circ}$ in declination for pulsars and fast transients in the 140–170 MHz band. The survey is enabled by the advent of the Phase II MWA’s compact configuration, which offers an enormous efficiency in beam-forming and processing costs, thereby making an all-sky survey of this magnitude tractable with the MWA. Even with the long dwell times employed for the survey (4800 s), data collection can be completed in $<$100 h of telescope time, while still retaining the ability to reach a limiting sensitivity of $\sim$2–3 mJy (at 150 MHz, near zenith), which is effectively 3–5 times deeper than the previous-generation low-frequency southern-sky pulsar survey, completed in the 1990s. Each observation is processed to generate $\sim$5000–8000 tied-array beams that tessellate the full $\sim 610\, {\textrm{deg}^{2}}$ field of view (at 155 MHz), which are then processed to search for pulsars. The voltage-capture recording of the survey also allows a multitude of post hoc processing options including the reprocessing of data for higher time resolution and even exploring image-based techniques for pulsar candidate identification. Due to the substantial computational cost in pulsar searches at low frequencies, the survey data processing is undertaken in multiple passes: in the first pass, a shallow survey is performed, where 10 min of each observation is processed, reaching about one-third of the full-search sensitivity. Here we present the system overview including details of ongoing processing and initial results. Further details including first pulsar discoveries and a census of low-frequency detections are presented in a companion paper. Future plans include deeper searches to reach the full sensitivity and acceleration searches to target binary and millisecond pulsars. Our simulation analysis forecasts $\sim$300 new pulsars upon the completion of full processing. The SMART survey will also generate a complete digital record of the low-frequency sky, which will serve as a valuable reference for future pulsar searches planned with the low-frequency Square Kilometre Array.
We assessed patterns of enteric infections caused by 14 pathogens, in a longitudinal cohort study of sequelae in British Columbia (BC) Canada, 2005–2014. Our population cohort of 5.8 million individuals was followed for an average of 7.5 years/person; during this time, 40 523 individuals experienced 42 308 incident laboratory-confirmed, provincially reported enteric infections (96.4 incident infections per 100 000 person-years). Most individuals (38 882/40 523; 96%) had only one, but 4% had multiple concurrent infections or more than one infection across the study. Among individuals with more than one infection, the pathogens and combinations occurring most frequently per individual matched the pathogens occurring most frequently in the BC population. An additional 298 557 new fee-for-service physician visits and hospitalisations for enteric infections, that did not coincide with a reported enteric infection, also occurred, and some may be potentially unreported enteric infections. Our findings demonstrate that sequelae risk analyses should explore the possible impacts of multiple infections, and that estimating risk for individuals who may have had a potentially unreported enteric infection is warranted.
Recently, defaults have become celebrated as a low-cost and easy-to-implement nudge for promoting positive outcomes, both at an individual and societal level. In the present research, we conducted a large-scale field experiment (N = 32,508) in an educational context to test the effectiveness of a default intervention in promoting participation in a potentially beneficial achievement test. We found that a default manipulation increased the rate at which high school students registered to take the test but failed to produce a significant change in students’ actual rate of test-taking. These results join past literature documenting robust effects of default framings on initial choice but marked variability in the extent to which those choices ultimately translate to real-world outcomes. We suggest that this variability is attributable to differences in choice-to-outcome pathways – the extent to which the initial choice is causally determinative of the outcome.
MeerTime is a five-year Large Survey Project to time pulsars with MeerKAT, the 64-dish South African precursor to the Square Kilometre Array. The science goals for the programme include timing millisecond pulsar (MSPs) to high precision (${<} 1 \unicode{x03BC} \mathrm{s}$) to study the Galactic MSP population and to contribute to global efforts to detect nanohertz gravitational waves with the International Pulsar Timing Array (IPTA). In order to plan for the remainder of the programme and to use the allocated time most efficiently, we have conducted an initial census with the MeerKAT ‘L-band’ receiver of 189 MSPs visible to MeerKAT and here present their dispersion measures, polarisation profiles, polarisation fractions, rotation measures, flux density measurements, spectral indices, and timing potential. As all of these observations are taken with the same instrument (which uses coherent dedispersion, interferometric polarisation calibration techniques, and a uniform flux scale), they present an excellent resource for population studies. We used wideband pulse portraits as timing standards for each MSP and demonstrated that the MeerTime Pulsar Timing Array (MPTA) can already contribute significantly to the IPTA as it currently achieves better than $1\,\unicode{x03BC}\mathrm{s}$ timing accuracy on 89 MSPs (observed with fortnightly cadence). By the conclusion of the initial five-year MeerTime programme in 2024 July, the MPTA will be extremely significant in global efforts to detect the gravitational wave background with a contribution to the detection statistic comparable to other long-standing timing programmes.
The rapid spread of coronavirus disease 2019 (COVID-19) required swift preparation to protect healthcare personnel (HCP) and patients, especially considering shortages of personal protective equipment (PPE). Due to the lack of a pre-existing biocontainment unit, we needed to develop a novel approach to placing patients in isolation cohorts while working with the pre-existing physical space.
Objectives:
To prevent disease transmission to non–COVID-19 patients and HCP caring for COVID-19 patients, to optimize PPE usage, and to provide a comfortable and safe working environment.
Methods:
An interdisciplinary workgroup developed a combination of approaches to convert existing spaces into COVID-19 containment units with high-risk zones (HRZs). We developed standard workflow and visual management in conjunction with updated staff training and workflows. The infection prevention team created PPE standard practices for ease of use, conservation, and staff safety.
Results:
The interventions resulted in 1 possible case of patient-to-HCP transmission and zero cases of patient-to-patient transmission. PPE usage decreased with the HRZ model while maintaining a safe environment of care. Staff on the COVID-19 units were extremely satisfied with PPE availability (76.7%) and efforts to protect them from COVID-19 (72.7%). Moreover, 54.8% of HCP working in the COVID-19 unit agreed that PPE monitors played an essential role in staff safety.
Conclusions:
The HRZ model of containment unit is an effective method to prevent the spread of COVID-19 with several benefits. It is easily implemented and scaled to accommodate census changes. Our experience suggests that other institutions do not need to modify existing physical structures to create similarly protective spaces.
Virtual reality (VR) has the potential to improve pain and pain-related symptoms. We examined the feasibility, acceptability, safety, and impact of a 30-min virtual underwater/sea environment (VR Blue) for reducing pain and pain-related symptoms in advanced colorectal cancer patients. A qualitative exit interview was conducted to understand preferences, thoughts, and feelings about the VR session.
Method
Participants (N = 20) had stage IV colorectal cancer and moderate-to-severe pain. Participants completed a 30-min VR Blue session that visually and aurally immersed them in virtual ocean scenarios. Feasibility was assessed by accrual (N = 20), protocol adherence (≥80% completing VR Blue), and completed data (≥80% assessment completion). Acceptability was determined by patients reporting ≥80% intervention satisfaction. Safety was determined by ≥80% of patients completing the session without self-reported side effects. Measures of pain, tension, relaxation, stress, anxiety, and mood were collected before, during, and after the VR Blue session. A semi-structured qualitative interview was conducted after VR Blue to assess participants’ VR experiences.
Results
All participants (100%) completed the VR Blue session. There was 100% data collection at the pre- and post-assessments. Satisfaction with VR Blue was high M = 3.3 (SD = 0.4) (83%). No significant side effects were reported. Pain decreased by 59% (Pre-M = 3 [1]; Post-M = 1 [1]). Tension decreased by 74% (Pre-M = 30 [24]; Post-M = 8 [13]). Relaxation improved by 38% (Pre-M = 62 [21]); Post-M = 86 [17]). Stress decreased by 68% (Pre-M = 24 [24]; Post-M = 8 [14]). Anxiety decreased by 65% (Pre-M = 20 [23]; Post-M = 7 [13]). Mood improved by 70% (Pre-M = 13 [16]; Post-M = 4 [11]). Qualitative data suggested a positive response to the VR Blue protocol.
Significance of results
This work supports the feasibility, acceptability, and safety of VR Blue for advanced colorectal cancer patients. Participants showed significant pre-post improvement in pain and pain-related symptoms hinting to the potential feasibility of VR interventions in this population. Larger, randomized trials with a control condition are needed to examine the efficacy of VR-based interventions for patients with advanced colorectal cancer and pain.
To describe the cumulative seroprevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) antibodies during the coronavirus disease 2019 (COVID-19) pandemic among employees of a large pediatric healthcare system.
Design, setting, and participants:
Prospective observational cohort study open to adult employees at the Children’s Hospital of Philadelphia, conducted April 20–December 17, 2020.
Methods:
Employees were recruited starting with high-risk exposure groups, utilizing e-mails, flyers, and announcements at virtual town hall meetings. At baseline, 1 month, 2 months, and 6 months, participants reported occupational and community exposures and gave a blood sample for SARS-CoV-2 antibody measurement by enzyme-linked immunosorbent assays (ELISAs). A post hoc Cox proportional hazards regression model was performed to identify factors associated with increased risk for seropositivity.
Results:
In total, 1,740 employees were enrolled. At 6 months, the cumulative seroprevalence was 5.3%, which was below estimated community point seroprevalence. Seroprevalence was 5.8% among employees who provided direct care and was 3.4% among employees who did not perform direct patient care. Most participants who were seropositive at baseline remained positive at follow-up assessments. In a post hoc analysis, direct patient care (hazard ratio [HR], 1.95; 95% confidence interval [CI], 1.03–3.68), Black race (HR, 2.70; 95% CI, 1.24–5.87), and exposure to a confirmed case in a nonhealthcare setting (HR, 4.32; 95% CI, 2.71–6.88) were associated with statistically significant increased risk for seropositivity.
Conclusions:
Employee SARS-CoV-2 seroprevalence rates remained below the point-prevalence rates of the surrounding community. Provision of direct patient care, Black race, and exposure to a confirmed case in a nonhealthcare setting conferred increased risk. These data can inform occupational protection measures to maximize protection of employees within the workplace during future COVID-19 waves or other epidemics.
Catheter ablation is a safe and effective therapy for the treatment of supraventricular tachycardia in children. Current improvements in technology have allowed progressive reduction in radiation exposure associated with the procedure. To assess the impact of three-dimensional mapping, we compared acute procedural results collected from the Catheter Ablation with Reduction or Elimination of Fluoroscopy registry to published results from the Prospective Assessment after Pediatric Cardiac Ablation study.
Methods:
Inclusion and exclusion criteria from the Prospective Assessment after Pediatric Cardiac Ablation study were used as guidelines to select patient data from the Catheter Ablation with Reduction or Elimination of Fluoroscopy registry to compare acute procedural outcomes between cohorts. Outcomes assessed include procedural and fluoroscopy exposure times, success rates of procedure, and complications.
Results:
In 786 ablation procedures, targeting 498 accessory pathways and 288 atrioventricular nodal reentrant tachycardia substrates, average procedural time (156.5 versus 206.7 minutes, p < 0.01), and fluoroscopy time (1.2 versus 38.3 minutes, p < 0.01) were significantly shorter in the study group. Success rates for the various substrates were similar except for manifest accessory pathways which had a significantly higher success rate in the study group (96.4% versus 93.0%, p < 0.01). Major complication rates were significantly lower in the study group (0.3% versus 1.6%, p < 0.01).
Conclusions:
In a large, multicentre study, three-dimensional systems show favourable improvements in clinical outcomes in children undergoing catheter ablation of supraventricular tachycardia compared to the traditional fluoroscopic approach. Further improvements are anticipated as technology advances.
Reproductive issues as related to CHD must be discussed in the clinic and at home. Providers can ensure that correct information is imparted to the adolescent and encourage mothers to provide support and guidance to the adolescent. The level to which these conversations occur is unknown.
Methods:
A survey distributed to female adolescent/mother dyads assessed self-reported conversations with the healthcare provider and between each other about reproductive health topics. A clinician survey was completed to assess CHD diagnosis, risk of hormonal contraception, and pregnancy risk.
Results:
Among 91 dyads, 33.0% of adolescents and 42.9% of mothers reported discussing recurrence risk of CHD with the provider. In regard to the cardiac lesion affecting a baby, 30.7% of adolescents and 28.7% of mothers reported discussing this with a provider. Significantly less adolescents and mothers reported discussing the risks of hormonal contraception and pregnancy with a provider. In assessing conversations between adolescents and mothers, only 44.2% of adolescents and 52.3% of mothers reported discussing with each other the safety of using birth control and 46.5% of adolescents and 64.0% of mothers reported discussing the safety of pregnancy.
Conclusions:
Adolescents with CHD and their mothers report low rates of reproductive health-related conversations with the healthcare provider, and mothers report low rates of having these conversations with their daughters. These topics should be discussed at each appointment with the cardiologist and must be encouraged to continue at home.