We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study examined the relationship between changes in physical activity and their impact on exercise capacity and health-related quality of life over a 3-year span in patients with CHD.
Methods:
We evaluated 99 young patients with CHD, aged 13–18 years at the outset. Physical activity, health-related quality of life, and exercise capacity were assessed via questionnaires and peak oxygen uptake measurements at baseline and after 3 years; changes in measures were estimated between the two time points and categorised into quartiles. Participants were stratified according to achieved (active) or not-achieved (inactive) recommended levels of physical activity (≥150 minutes/week) at both time points.
Results:
Despite increases in physical activity, exercise capacity, and health-related quality of life over 3 years, the changes were not statistically significant (all p > 0.05). However, a positive association was found between physical activity changes and exercise capacity (ß = 0.250, p = 0.040) and health-related quality of life improvements (ß = 0.380, p < 0.001). Those with the most pronounced physical activity increase showed notable exercise capacity (p < 0.001) and health-related quality of life increases (p < 0.001) compared with patients with the largest decline in physical activity. The active-inactive category demonstrated a notable decline in exercise capacity compared to the active-active group, while the inactive-active group showed health-related quality of life improvements.
Conclusions:
Over 3 years, increased physical activity was consistently linked to increases in exercise capacity and health-related quality of life in patients with CHD, highlighting the potential of physical activity augmentation as an intervention strategy.
Activity biosensors have been used recently to measure and diagnose the physiological status of dairy cows. However, owing to the variety of commercialized activity biosensors available in the market, activity data generated by a biosensor need to be standardized to predict the status of an animal and make relevant decisions. Hence, the objective of this study was to develop a standardization method for accommodating activity measurements from different sensors. Twelve Holstein dairy cows were monitored to collect 12 862 activity data from four types of sensors over five months. After confirming similar cyclic activity patterns from the sensors through correlation and regression analyses, the gamma distribution was employed to calculate the cumulative probability of the values of each biosensor. Then, the activity values were assigned to three levels (i.e., idle, normal and active) based on the defined proportion of each level, and the values at each level from the four sensors were compared. The results showed that the number of measurements belonging to the same level was similar, with less than a 10% difference at a specific threshold value. In addition, more than 87% of the heat alerts generated by the internal algorithm of three of the four biosensors could be assigned to the active level, suggesting that the current standardization method successfully integrated the activity measurements from different biosensors. The developed probability-based standardization method is expected to be applicable to other biosensors for livestock, which will lead to the development of models and solutions for precision livestock farming.
This study aimed to investigate associations among spirituality, coping strategies, quality of life (QOL), and the effects of depression and anxiety thereon in cancer patients.
Method
In total, 237 cancer patients referred to a psycho-oncology clinic at a university hospital in Korea were enrolled. After identifying predictors of patient QOL in a stepwise regression model, we developed a hypothetical path model wherein interpersonal coping was considered as a mediating variable between spirituality (meaning/peace) and QOL and wherein depression and anxiety affected each of these three variables.
Result
The direct effect of spirituality (meaning/peace) on QOL was 36.7%. In an indirect model, interpersonal coping significantly mediated the relationship between spirituality (meaning/peace) and QOL. Depression exerted the largest negative effect on spirituality (meaning/peace), interpersonal coping, and QOL. Anxiety had negative effects on spirituality (meaning/peace) and QOL, but a positive effect on interpersonal coping.
Significance of results
Interpersonal coping strategies work as a partial mediator of the relationship between meaning/peace subscales of spirituality and QOL. Effective management of depression may help in achieving better outcomes associated therewith. Greater attention and efforts to improve social connectedness and meaning of life in spiritual well-being may improve the QOL of cancer patients.
Depressive symptoms are common in bereaved caregivers; however, there have been few prospective studies using a structured interview. This study investigated the prevalence and preloss predictors of major depressive disorder (MDD) in bereaved caregivers of patients in a palliative care unit.
Method
This prospective cohort study collected caregiver sociodemographic and psychological data before the death of a palliative care unit patient, including MDD, care-burden, coping style, and hopeful attitude. Postloss MDD was assessed 6 and 13 months after death, and a multivariate logistic regression analysis was conducted to identify its predictors.
Result
Of 305 caregivers contacted, 92 participated in this study. The prevalence of preloss MDD was 21.8%; the prevalences of postloss MDD were 34.8% and 24.7% at 6 and 13 months, respectively. Preloss MDD predicted postloss MDD at 6 months (odds ratio [OR] = 5.38, 95% confidence interval [CI95%] = 1.29, 22.43); preloss nonhopeful attitude and unemployment status of caregivers predicted postloss MDD at 13 months (OR = 8.77, CI95% = 1.87, 41.13 and OR = 7.10, CI95% = 1.28, 39.36, respectively).
Significance of results
Approximately 35% of caregivers suffered from MDD at 6 months postloss, but the prevalence of MDD decreased to about 25% at 13 months. Preloss MDD significantly predicted postloss MDD at 6 months, whereas hopeful attitude and unemployment at baseline were significantly associated with postloss MDD at 13 months.
We report a simple and scalable process to synthesize the core–shellnanostructure of MoS2@N-doped carbon nanosheets (MoS2@C),in which polydopamine is coated on the MoS2 surface and thencarbonized. Transmission electron microscopy reveals that the as-synthesizedMoS2@C possesses a nanoscopic and ultrathin layer ofMoS2 sheets with a thin and conformal coating of carbon layers(∼5 nm). The MoS2@C demonstrates a superiorelectrochemical performance as an anode material for lithium ion batteriescompared to exfoliated MoS2 sample. This unique core–shellstructure is capable of excellent delivery of Li+ ion incharging–discharging process: a specific capacity as high as 1239 mAh g−1, a high rate of charging-discharging capability evenat a high current rate of 10 A g−1 while retaining 597 mAh g−1, and a good cycle stability over 70 cycles at a highcurrent rate of 2 A g−1.
To determine the influence of caregiver personality and other factors on the burden of family caregivers of terminally ill cancer patients.
Method:
We investigated a wide range of factors related to the patient–family caregiver dyad in a palliative care setting using a cross-sectional design. Caregiver burden was assessed using the seven-item short version of the Zarit Burden Interview (ZBI–7). Caregiver personality was assessed using the 10-item short version of the Big Five Inventory (BFI–10), which measures the following five personality dimensions: extroversion, agreeableness, conscientiousness, neuroticism, and openness. Patient- and caregiver-related sociodemographic and psychological factors were included in the analysis because of their potential association with caregiver burden. Clinical patient data were obtained from medical charts or by using other measures. Multivariate linear regression analysis was performed to identify the independent factors associated with caregiver burden.
Results:
We analyzed 227 patient–family caregiver dyads. The multivariate analysis revealed that caregiver extroversion was protective against caregiver burden, whereas depressive symptoms in caregivers were related to increased burden. Neuroticism was positively correlated with caregiver burden, but this relationship was nonsignificant following adjustment for depressive symptoms. Patient-related factors were not significantly associated with caregiver burden.
Significance of Results:
Evaluating caregiver personality traits could facilitate identification of individuals at greater risk of high burden. Furthermore, depression screening and treatment programs for caregivers in palliative care settings are required to decrease caregiver burden.
The incidence of restless legs syndrome (RLS) is presumed to be higher among people with schizophrenia who take antipsychotic medication, most of which blocks the dopamine D2 receptor. The purpose of this study was to determine whether the G-protein β3 subunit (GNB3) C825T polymorphism is associated with antipsychotic-induced RLS in schizophrenia.
Methods:
We examined 178 Korean patients with schizophrenia. All of the subjects were evaluated using the diagnostic criteria of the International Restless Legs Syndrome Study Group and the International Restless Legs Scale. Genotyping was performed for the C825T polymorphism in the GNB3 gene.
Results:
The genotype distribution did not differ significantly between antipsychotic-induced RLS patients and patients who had no-RLS symptoms (χ2 = 4.30, p = 0.116). The genotypes of the C825T single-nucleotide polymorphism (SNP) were classified into two groups: C+ (CC and CT genotypes) and C– (TT genotype). The presence of the C allele (C+) was associated with an increased likelihood of RLS (χ2 = 4.14, p = 0.042; odds ratio = 2.56, 95% confidence interval = 1.02–6.47).
Conclusions:
These results suggest that the GNB3 C825T SNP is associated with RLS in schizophrenia. However, confirming this association requires future larger scale studies in which the effects of medication are strictly controlled.
Liposomal drug delivery products have been already commercialized in tumor therapeutics, which can realize passive tumor targeting via enhanced permeability and retention (EPR) effect resulting from the leaky tumor vasculature. To control drug release out of the liposomes, thermo-sensitive liposomes (TSLs) have been developed so that an abrupt exposure of highly concentrated drugs to tumor tissues was enabled by locally treated thermal stimuli. As interests upon TSL have increased along with ongoing clinical trials, some types of TSLs with different physical properties in pharmacokinetics and the mechanism of drug release have been formulated. However, there are few protocols established with a desirable heat source to maximize the efficacy of different TSLs as treating tumors. In this study, we examined different protocols for the most effective application of different TSLs to tumor therapy. First, we examined if enhancing the accumulation of TSLs within tumor tissues prior to bursting drugs out of TSLs could lead to increasing anti-tumor efficacy. Second, we compared the efficiency of two different heat sources on the use of TSL, a warm water bath (42°C) and high intensity focused ultrasound (HIFU). Our study suggests that the specified protocol be setup for TSLs with different physical properties to optimally function in tumor therapies.
To investigate whether low vitamin D status was related to insulin resistance (IR) or impaired fasting glucose (IFG) in Korean adolescents, after adjusting for total body fat mass (FM).
Design
A cross-sectional study.
Setting
Korea National Health and Nutrition Examination Survey (KNAHNES) 2009–2010.
Subjects
In total, 1466 participants (769 males) aged 10–19 years were assessed for serum 25-hydroxyvitamin D (25(OH)D) levels, for FM by whole-body dual-energy X-ray absorptiometry and for IR by homeostasis model assessment (HOMA-IR) after an 8 h fast.
Results
Age-, sex-, season- and physical-activity-adjusted regression models showed that serum 25(OH)D levels were significantly related to markers of adiposity (P = 0·016 for FM (g), P = 0·023 for FM (%) and P = 0·035 for fat mass index). When the participants were stratified into three 25(OH)D categories (<37·5 nmol/l (n 553), 37·5 to < 50 nmol/l (n 543) and ≥ 50 nmol/l (n 370)), significantly decreasing trends were observed for fasting insulin (all P < 0·001), HOMA-IR (all P < 0·001) and the odds ratios for IFG (all P for trend < 0·05) from the lowest to the highest 25(OH)D category, after adjustments for age, sex, physical activity and all markers of adiposity. In the multivariate logistic regression analysis, the likelihood of participants in the lowest serum 25(OH)D category having IFG was 2·96–3·15 compared with those in the highest 25(OH)D category (all P < 0·05).
Conclusions
There was a significant inverse relationship between vitamin D status and IR and the risk of IFG, independent of adiposity, in Korean adolescents.
The size dependence of the lattice parameter of nanosolids has extensively been studied because lattice strain engineering is important in controlling the physical properties of nanowires (NWs), such as band gap, carrier transport, mechanical strength, etc. We have investigated the size-dependent lattice behavior of microstructure-controlled Sn NWs with radii of 7–35 nm. The NW microstructures were controlled as single-crystal, granular, and bamboo structures in the longitudinal direction. Results showed that the a-axis lattice parameter in the [100]-longitudinal direction of NWs can be controlled within 1% by varying the wire microstructure for the same wire radius because it is strongly dependent on the microstructure and the wire radius. Moreover, as the randomness of the grain orientation in the microstructure-controlled NWs increases, by which the anisotropy of surface stress is effectively reduced, the lattice strain of the NW can be compressive or tensile as a function of the wire radius. The longitudinal lattice parameters of microstructure-controlled Sn NWs can be tailored by reducing the effective anisotropy of surface stresses under a dimension confinement in the nanometer scale.
Somatic cell nuclear transfer (SCNT) has emerged as an important tool for producing transgenic animals and deriving transgenic embryonic stem cells. The process of SCNT involves fusion of in vitro matured oocytes with somatic cells to make embryos that are transgenic when the nuclear donor somatic cells carry ‘foreign’ DNA and are clones when all the donor cells are genetically identical. However, in canines, it is difficult to obtain enough mature oocytes for successful SCNT due to the very low efficiency of in vitro oocyte maturation in this species that hinders canine transgenic cloning. One solution is to use oocytes from a different species or even a different genus, such as bovine oocytes, that can be matured easily in vitro. Accordingly, the aim of this study was: (1) to establish a canine fetal fibroblast line transfected with the green fluorescent protein (GFP) gene; and (2) to investigate in vitro embryonic development of canine cloned embryos derived from transgenic and non-transgenic cell lines using bovine in vitro matured oocytes. Canine fetal fibroblasts were transfected with constructs containing the GFP and puromycin resistance genes using FuGENE 6®. Viability levels of these cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Interspecies SCNT (iSCNT) embryos from normal or transfected cells were produced and cultured in vitro. The MTT measurement of GFP-transfected fetal fibroblasts (mean OD = 0.25) was not significantly different from non-transfected fetal fibroblasts (mean OD = 0.35). There was no difference between transgenic iSCNT versus non-transgenic iSCNT embryos in terms of fusion rates (73.1% and 75.7%, respectively), cleavage rates (69.7% vs. 73.8%) and development to the 8–16-cell stage (40.1% vs. 42.7%). Embryos derived from the transfected cells completely expressed GFP at the 2-cell, 4-cell, and 8–16-cell stages without mosaicism. In summary, our results demonstrated that, following successful isolation of canine transgenic cells, iSCNT embryos developed to early pre-implantation stages in vitro, showing stable GFP expression. These canine–bovine iSCNT embryos can be used for further in vitro analysis of canine transgenic cells and will contribute to the production of various transgenic dogs for use as specific human disease models.
Stream restoration is an important process affecting the ecological health of stream ecosystems. There have been numerous cases of restoration, dealing with either structural or biological changes. In Korea, most restoration projects have merely dealt with improving hydrological characteristics or water quality; however, in recent years the improvement of ecological characteristics has been an increasing focus for restoration projects. In this study, we utilized data collected from 5675 stream sites in May 2007 to discover general patterns of anthropogenic modification in Korean streams. The survey results after application of the stream modification index (SMI; presence or absence type; high scores indicate more disturbed) provided a general distribution of disturbed/undisturbed streams or rivers in the watershed. We then compared the level of modification with the socio-geographical patterns (population, land coverage, elevation, and slope) for the watershed. The results show that streams in highly populated areas suffered from human modification compared with other well-preserved stream sites. In metropolitan cities, urbanized areas had positive relationship as identified by a high SMI. On the other hand, agricultural land cover identified an SMI increase for lowland river area. In general, mountainous streams possessed a better status in stream morphology due to different land-cover patterns (i.e., mainly forested area); however, some mountainous areas were impacted by concentrated summer rainfall. We could distinguish the forcing variables (i.e., land use pattern) for the disturbed streams through a comparison between the SMI and geographical information; the SMI application was able to identify areas of high necessity for restoration.
Stream development can generate environmental changes that impact fish communities. In temperate streams, the distribution of fish species is associated with environmental gradients. To analyze the relevant factors, large-scale exploration is required. Thus, to evaluate the distribution patterns of fish in Korea, sampling was conducted on a national scale at 720 sites over a 6-week period in 2009. A total of 124 fish species in 27 families were identified; Zacco platypus and Zacco koreanus of the Cyprinidae were the dominant and subdominant species, respectively. Of the species found, 46 (37.1%) were endemic and 4 (3.2%) exotic; of the latter, Micropterus salmoides and Lepomis macrochirus were widely distributed. Upon canonical correspondence analysis (CCA), both altitude and biological oxygen demand (BOD) were highly correlated with CCA axes 1 and 2, respectively. This explained 62.5% of the species–environment relationship. Altitude and stream order were longitudinally related to species distribution. The numbers of both total and endemic species gradually increased as streams grew in size to the fourth–fifth-order, and decreased in sixth-order, streams. Overall, fish communities were stable throughout the entire watershed, whereas some species showed site-specific occurrence patterns due to the paleogeomorphological characteristics of Korean peninsula. However, various anthropogenic activities may negatively affect fish communities. Therefore, both short- and long-term sustainable management strategies are required to conserve native fish fauna.
Nitrogen-doped titania with a unique two-level hierarchical structure and visible light photocatalytic activity is reported. Thus, nitrogen-doped titanium oxide microrods decorated with N-doped titanium oxide nanosheets were synthesized by a hydrothermal reaction in NH4OH and postcalcination. During the calcination, the in situ incorporation of nitrogen atoms of ammonium ion into titania lattice was accompanied by the structural evolution from titanate to anatase titania. The morphological and structural evolution was monitored by scanning electron microscopy (SEM), x-ray diffraction (XRD), thermogravimetric analysis/differential thermal analysis (TGA/DTA), Raman, Fourier transform infrared (FTIR), x-ray absorption near edge structure (XANES), x-ray photoelectron spectroscopy (XPS), and adsorption isotherms. The N-doping brought visible light absorption, and the material exhibited high photocatalytic activity in the decomposition of Orange II under visible light irradiation (λ ≥ 400 nm), especially when it was loaded with 1 wt% Pt as a cocatalyst.
We aimed to investigate the factors associated with a positive intake of folic acid (FA) during the periconceptional period among Korean women.
Design
In a cross-sectional study of demographic, obstetric and socio-economic data, history of periconceptional intake of FA and awareness of the benefits of FA supplementation in pregnancy were obtained and analysed using the χ2 test, followed by multiple logistic regression analysis.
Setting
The Maternity School, Cheil General Hospital and Women’s Healthcare Center, Seoul, South Korea, between October 2005 and March 2006.
Subjects
In total 1313 pregnant women participating in a two-day training course available every month.
Results
After excluding subjects with incomplete or inconsistent data, there were 1277 women included in the analysis. Participants were aged 29·4 (sd 2·9) years and had a mean gestational age of 27·9 (sd 7·1) weeks. Only 131 (10·3 %) women took FA during the periconceptional period. According to multiple logistic regression analyses, the adjusted OR for FA supplementation was 1·79 (95 % CI 1·10, 2·91) in women who had previous spontaneous abortions, 4·10 (95 % CI 2·43, 6·78) in women who planned their pregnancy and 6·63 (95 % CI 2·08, 21·12) in those who were aware of the protective effects of FA.
Conclusions
Periconceptional intake of FA was more likely among Korean women with a history of previous spontaneous abortion, who planned their pregnancy or who were aware of the protective effects of FA during pregnancy. However, the proportion of women who took FA in the periconceptional period was low.
Plasma doping (PLAD) process utilizing PH3 plasma to fabricate n-type junction with supplied bias of −1 kV and doping time of 60 sec under the room temperature is presented. The RTA process is performed at 900 °C for 10 sec. A defect-free surface is corroborated by TEM and DXRD analyses, and examined SIMS profiles reveal that shallow n+ junctions are formed with surface doping concentration of 1021atoms/cm3. The junction depth increases in proportion to the O2 gas flow when the N2 flow is fixed during the RTA process, resulting in a decreased sheet resistance. Measured doping profiles and the sheet resistance confirm that the n+ junction depth less than 52 nm and minimum sheet resistance of 313 Ω/□ are feasible.
Spin-up flows of a compressible gas in a finite, closed cylinder from an initial state of rest are studied, The flow is characterized by small reference Ekman numbers, and the peripheral Mach number is O(1). Comprehensive numerical solutions have been obtained for the full, time-dependent compressible Navier-Stokes equations. The details of the flow, temperature, and density evolution are described. In the early phase of spin-up, owing to the thermoacoustic disturbances caused by the compressible Rayleigh effect, the flows are oscillatory, and this oscillatory behaviour is pronounced at higher Mach numbers. The principal dynamical role of the Ekman layer is dominant over moderate times of orders of the homogeneous spin-up timescales. Owing to the density stratification in the radial direction, the Ekman layer is thicker in the central region of the interior. The interior azimuthal flows are mainly uniform in the axial direction. As the Mach number increases, the rate of spin-up in the interior becomes slower, and the propagating shear front is more diffusive. Explicit comparisons with the results for an infinite cylinder are made to ascertain the contributions of the endwall disks. In contrast to the usual incompressible spin-up from rest, the viscous effects are relatively more important for the case of a compressible fluid.
A numerical study is performed for time-varying natural convection of an incompressible Boussinesq fluid in a sidewall-heated square cavity. The temperature at the cold sidewall Tc is constant, but at the hot sidewall a time-varying temperature condition is prescribed, $ T_H = \overline{T_H} + \Delta T^{\prime} \sin ft $. Comprehensive numerical solutions are found for the time-dependent Navier–Stokes equations. The numerical results are analysed in detail to show the existence of resonance, which is characterized by maximal amplification of the fluctuations of heat transfer in the interior. Plots of the dependence of the amplification of heat transfer fluctuations on the non-dimensional forcing frequency ω are presented. The failure of Kazmierczak & Chinoda (1992) to identify resonance is shown to be attributable to the limitations of the parameter values they used. The present results illustrate that resonance becomes more distinctive for large Ra and Pr ∼ 0(1). The physical mechanism of resonance is delineated by examining the evolution of oscillating components of flow and temperature fields. Specific comparisons are conducted for the resonance frequency ωr between the present results and several other previous predictions based on the scaling arguments.