We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Screen time in infancy is linked to changes in social-emotional development but the pathway underlying this association remains unknown. We aim to provide mechanistic insights into this association using brain network topology and to examine the potential role of parent–child reading in mitigating the effects of screen time.
Methods
We examined the association of screen time on brain network topology using linear regression analysis and tested if the network topology mediated the association between screen time and later socio-emotional competence. Lastly, we tested if parent–child reading time was a moderator of the link between screen time and brain network topology.
Results
Infant screen time was significantly associated with the emotion processing-cognitive control network integration (p = 0.005). This network integration also significantly mediated the association between screen time and both measures of socio-emotional competence (BRIEF-2 Emotion Regulation Index, p = 0.04; SEARS total score, p = 0.04). Parent–child reading time significantly moderated the association between screen time and emotion processing-cognitive control network integration (β = −0.640, p = 0.005).
Conclusion
Our study identified emotion processing-cognitive control network integration as a plausible biological pathway linking screen time in infancy and later socio-emotional competence. We also provided novel evidence for the role of parent–child reading in moderating the association between screen time and topological brain restructuring in early childhood.
Accurately predicting neurosyphilis prior to a lumbar puncture (LP) is critical for the prompt management of neurosyphilis. However, a valid and reliable model for this purpose is still lacking. This study aimed to develop a nomogram for the accurate identification of neurosyphilis in patients with syphilis. The training cohort included 9,504 syphilis patients who underwent initial neurosyphilis evaluation between 2009 and 2020, while the validation cohort comprised 526 patients whose data were prospectively collected from January 2021 to September 2021. Neurosyphilis was observed in 35.8% (3,400/9,504) of the training cohort and 37.6% (198/526) of the validation cohort. The nomogram incorporated factors such as age, male gender, neurological and psychiatric symptoms, serum RPR, a mucous plaque of the larynx and nose, a history of other STD infections, and co-diabetes. The model exhibited good performance with concordance indexes of 0.84 (95% CI, 0.83–0.85) and 0.82 (95% CI, 0.78–0.86) in the training and validation cohorts, respectively, along with well-fitted calibration curves. This study developed a precise nomogram to predict neurosyphilis risk in syphilis patients, with potential implications for early detection prior to an LP.
During the operation of automatic navigation rice transplanter, the accuracy of path tracking is influenced by whether the transplanter can enter the stable state of linear path tracking quickly, thus affecting the operation quality and efficiency. To reduce the time to enter the path tracking stable state and improve the tracking accuracy and stability for the rice transplanter, path tracking control method based on variable universe fuzzy control (VUFC) and improved beetle antenna search (BAS) is proposed in this paper. VUFC is applied to achieve adaptive adjustment of the fuzzy universe by dynamically adjusting the quantization and scaling factors according to the variations of errors by the contraction–expansion factor. To solve the problem of setting the contraction–expansion factor in VUFC and real-time performance, an offline parameter optimization method is presented to calculate the optimal contraction–expansion factor by an iterative optimization algorithm in a path tracking simulation model, where the iterative optimization algorithm is the BAS algorithm improved by the isolated niching technique and adaptive step size strategy in this paper. To verify the effectiveness of the proposed path tracking control method, simulation and field linear path tracking experiments were carried out. Experimental results indicate that the proposed method reduces the time of entering the stable state of linear path tracking and improves the accuracy and stability of path tracking compared with the pure pursuit control method.
A blunted hypothalamic–pituitary–adrenal (HPA) axis response to acute stress is associated with psychiatric symptoms. Although the prefrontal cortex and limbic areas are important regulators of the HPA axis, whether the neural habituation of these regions during stress signals both blunted HPA axis responses and psychiatric symptoms remains unclear. In this study, neural habituation during acute stress and its associations with the stress cortisol response, resilience, and depression were evaluated.
Methods
Seventy-seven participants (17–22 years old, 37 women) were recruited for a ScanSTRESS brain imaging study, and the activation changes between the first and last stress blocks were used as the neural habituation index. Meanwhile, participants' salivary cortisol during test was collected. Individual-level resilience and depression were measured using questionnaires. Correlation and moderation analyses were conducted to investigate the association between neural habituation and endocrine data and mental symptoms. Validated analyses were conducted using a Montreal Image Stress Test dataset in another independent sample (48 participants; 17–22 years old, 24 women).
Results
Neural habituation of the prefrontal cortex and limbic area was negatively correlated with cortisol responses in both datasets. In the ScanSTRESS paradigm, neural habituation was both positively correlated with depression and negatively correlated with resilience. Moreover, resilience moderated the relationship between neural habituation in the ventromedial prefrontal cortex and cortisol response.
Conclusions
This study suggested that neural habituation of the prefrontal cortex and limbic area could reflect motivation dysregulation during repeated failures and negative feedback, which might further lead to maladaptive mental states.
In 2016, an outbreak of paratyphoid fever occurred in 40 cases at Qingyang town, in China. A case-control study was carried out to determine the source of this outbreak. Case-control study was conducted to identify the risk factors of this outbreak. The cases were identified as patients with isolation of S. Paratyphi, controls were confirmed cases’ healthy classmates, colleagues or neighbors and matched by age (±5 y) and gender. Pulsed-field gel electrophoresis was performed to source tracking. Totally, 40 cases were reported: 24 cases were students, and 20 (20/24) of them were Qingyang High School students. For the case-control study, consuming Chinese egg pancakes was detected as a risk factor (OR1:1 = 5.000; 95% CI: 1.710-14.640), and hand-washing before meals was protective behavior compared with seldom hand-washing (OR1:1 = 23.256; 95% CI: 2.451-200.000). S. Paratyphi was cultured from a well water sample used for washing contents of the pancakes. Isolates from well water and paratyphoid cases showed the same PFGE patterns. Contaminated well water and Chinese egg pancakes were likely source and vehicle of this outbreak. Health education, especially handwashing, and food safety supervision should be promoted particularly in schools.
Mechanistic studies have suggested that antioxidants have beneficial effects on age-related macular degeneration (AMD). This study aimed to investigate the association between the types and sources of dietary vitamin and carotenoid intakes and AMD risk in China. A matched case–control study of 260 AMD cases and 260 matched controls was performed. The participants were interviewed for dietary information and potential confounders, and comprehensive ophthalmic examinations were performed. Conditional logistic models were used to estimate the odds ratio (OR) and 95 % confidence interval (CI) of specific vitamins and carotenoids and their main sources. When comparing the extreme quartiles, the ORs (95 % CI) were 0·30 (0·10, 0·88) for lutein and 0·28 (0·11, 0·74) for β-cryptoxanthin. The associations for other dietary vitamin and carotenoid intakes were generally weaker and non-significant. Higher intakes of spinach and egg, which are important sources of lutein, were associated with a reduced odds of AMD. ORs (95% CIs) comparing extreme categories were 0·42 (0·20, 0·88) for spinach and 0·52 (95% CI: 0·27, 0·98) for egg. Participants who were in the highest category of both egg intake and spinach intake had a much greater reduced odds of having AMD (OR: 0·23; 95% CI: 0·08, 0·71) than those in the lowest category of egg intake and spinach intake. In conclusion, a higher intake of lutein and lutein-rich foods was associated with a significantly decreased odds of AMD. These findings provide further evidence of the benefits of lutein and lutein-rich foods in the prevention of AMD.
Synaptotagmin 1 (Syt1) is an abundant and important presynaptic vesicle protein that binds Ca2+ for the regulation of synaptic vesicle exocytosis. Our previous study reported its localization and function on spindle assembly in mouse oocyte meiotic maturation. The present study was designed to investigate the function of Syt1 during mouse oocyte activation and subsequent cortical granule exocytosis (CGE) using confocal microscopy, morpholinol-based knockdown and time-lapse live cell imaging. By employing live cell imaging, we first studied the dynamic process of CGE and calculated the time interval between [Ca2+]i rise and CGE after oocyte activation. We further showed that Syt1 was co-localized to cortical granules (CGs) at the oocyte cortex. After oocyte activation with SrCl2, the Syt1 distribution pattern was altered significantly, similar to the changes seen for the CGs. Knockdown of Syt1 inhibited [Ca2+]i oscillations, disrupted the F-actin distribution pattern and delayed the time of cortical reaction. In summary, as a synaptic vesicle protein and calcium sensor for exocytosis, Syt1 acts as an essential regulator in mouse oocyte activation events including the generation of Ca2+ signals and CGE.
The lichen family Ophioparmaceae contains three genera: Boreoplaca, Hypocenomyce and Ophioparma. The genus Hypocenomyce is reported here for the first time for China, being represented by the species Hypocenomyce scalaris which is distributed in south-western China. For the genus Ophioparma, one new species is described in this paper, namely Ophioparma pruinosa Li S. Wang & Y. Y. Zhang sp. nov., which is characterized by a pruinose thallus and the presence of usnic acid. Ophioparma araucariae is also reported as new for the Chinese lichen biota. Previous reports of O. lapponica in China are recognized as misidentifications of O. ventosa. Descriptions, keys and phylograms are provided for these species.
Polymannuronic acid (PM), one of numerous alginates isolated from brown seaweeds, is known to possess antioxidant activities. In this study, we examined its potential role in reducing body weight gain and attenuating inflammation induced by a high-fat and high-sucrose diet (HFD) as well as its effect on modulating the gut microbiome in mice. A 30-d PM treatment significantly reduced the diet-induced body weight gain and blood TAG levels (P<0·05) and improved glucose tolerance in male C57BL/6J mice. PM decreased lipopolysaccharides in blood and ameliorated local inflammation in the colon and the epididymal adipose tissue. Compared with low-fat and low-sucrose diet (LFD), HFD significantly reduced the mean number of species-level operational taxonomic units (OTU) per sample as well as species richness (P<0·05) but did not appear to affect other microbial diversity indices. Moreover, compared with LFD, HFD altered the abundance of approximately 23 % of the OTU detected (log10 linear discriminant analysis (LDA) score>2·0). PM also had a profound impact on the microbial composition in the gut microbiome and resulted in a distinct microbiome structure. For example, PM significantly increased the abundance of a probiotic bacterium, Lactobacillus reuteri (log10 LDA score>2·0). Together, our results suggest that PM may exert its immunoregulatory effects by enhancing proliferation of several species with probiotic activities while repressing the abundance of the microbial taxa that harbor potential pathogens. Our findings should facilitate mechanistic studies on PM as a potential bioactive compound to alleviate obesity and the metabolic syndrome.
The micromorphology of a seed is linked to its dispersal and germination, but evolutionary and ecological aspects in Orchidaceae remain unclear. We investigated the seed characters of Paphiopedilum and Cypripedium that might be associated with life form and involved in possible ecological adaptations. A phylogenetic comparative analysis of nine seed micromorphological characters was performed in 24 species from two genera with close phylogenetic relationships but significant differences in their ecological characteristics. Species within Paphiopedilum had larger embryos and a smaller percentage of air space (AS) than those of Cypripedium species. Compared with 16 terrestrial species, two epiphytic Paphiopedilum species had larger embryos and smaller AS. Those larger embryos might ensure more successful seedling establishment while the higher amount of air space in both terrestrial Paphiopedilum and Cypripedium may increase seed buoyancy and enable them to disperse over longer distances. Whereas AS and seed length (SL) are phylogenetically conservative, most other characters examined here had weak signals, indicating clear convergent evolution. Across species, SL was positively correlated with AS, indicating a high degree of seed size–dispersal coordination. These findings may imply a trade-off of seed characters in relation to the possible ecological adaptations required for seedling establishment versus dispersal.
Three decades of economic reform have brought tremendous changes in every sector of the Chinese economy. The labor market is no exception, and it was particularly affected by important policy and institutional changes at the turn of the century. On the one hand, the state-sector reform was accelerated after the Chinese Communist Party's Fifteenth National Congress (September 1997), which encouraged both the corporatization of large state-owned enterprises (SOEs) and the restructuring of small SOEs. On the other hand, the Congress also recognized private enterprises as an important component of the economy and placed an emphasis on rule of law. As a direct consequence, the urban labor market was reshaped due to the unprecedented growth in unemployment and the reallocation of labor from the public to the private sector. At the same time, competition among workers in the urban labor market increased sharply due to the massive rural labor-force exodus, which led to an estimated 140 million rural workers in the cities by 2008.
In the context of a transitional economy, these dramatic changes raise a number of issues about the direction of the urban labor market. A key aspect to be explored is whether the labor market has become market oriented and whether enterprises with different ownerships operate competitively. Academic research using data collected from the mid-1990s to the early twenty-first century highlights the incompleteness of the reforms and the “unfinished economic revolution” (Lardy 1998), as well as the remaining rigidities in a segmented labor market with distinct rules for wage determination and limited labor mobility between segments (e.g., Chen, Démurger, and Fournier 2005; Démurger et al. 2006; Dong and Bowles 2002; Knight and Song 2003; Wang 2005).
Aiming at the isoparametric bilinear finite volume element scheme, we initially derive an asymptotic expansion and a high accuracy combination formula of the derivatives in the sense of pointwise by employing the energy-embedded method on uniform grids. Furthermore, we prove that the approximate derivatives are convergent of order two. Finally, numerical examples verify the theoretical results.
The ability of silver (Ag)-containing borate bioactive glass (BG) coatings to improve the biocompatibility and antibacterial properties of titanium (Ti) implants was investigated in vitro and in vivo in a rabbit tibial fracture model. Dense coatings of borate BG (thickness ≈ 20 μm) containing 0, 0.75, and 1.0 wt% Ag2O were prepared by depositing a layer of particles on Ti plates, followed by sintering at 900 °C. The as-prepared coatings had an adhesive strength of 10 ± 1 MPa, and when immersed in an aqueous phosphate (K2HPO4) solution, the coatings converted to hydroxyapatite, releasing Ag+ ions continuously for over 4 wk. After implantation of BG-coated Ti constructs in a rabbit tibial fracture model and of methicillin-resistant Staphylococcus aureus-induced osteomyelitis, the BG coating doped with 1.0 wt% Ag2O was most effective for the simultaneous eradication of the infection and fracture fixation. Implants coated with Ag-containing BG coatings could provide an approach for reducing implant-related bone infection.
We study the TV-L1 image approximation model from primal and dual perspective, based on a proposed equivalent convex formulations. More specifically, we apply a convex TV-L1 based approach to globally solve the discrete constrained optimization problem of image approximation, where the unknown image function u(x) ∈ {f1,…,fn}, ∀x ∈ Ω. We show that the TV-L1 formulation does provide an exact convex relaxation model to the non-convex optimization problem considered. This result greatly extends recent studies of Chan et al., from the simplest binary constrained case to the general gray-value constrained case, through the proposed rounding scheme. In addition, we construct a fast multiplier-based algorithm based on the proposed primal-dual model, which properly avoids variability of the concerning TV-L1 energy function. Numerical experiments validate the theoretical results and show that the proposed algorithm is reliable and effective.
We studied nanoprecipitates (NPs) and defects in p-type filled skutterudite CeFe4Sb12 prepared by a nonequilibrium melt spinning plus spark plasma sintering method using transmission electron microscopy. NPs with mostly spherical shapes and different sizes (from several nanometers to several tens of nanometers) have been observed. Among these, two types of NPs were most commonly observed, Sb-rich superlattices and CeSb2. The Sb-rich superlattices with a periodicity of about 3.6 nm were induced by the ordering of excessive Sb atoms along the c-direction. These NPs typically share coherent interfaces with the surrounding matrix and induce anisotropic strain fields in the matrix. NPs with compositions close to CeSb2, on the other hand, have been shown to be much larger in size (∼30 nm) and have orthorhombic structures. Various defects were typically observed on the interfaces between these NPs and the matrix. The strain fields induced by these NPs are less distinct, possibly because part of the strain has been released by defect formation.
What follows is a short report on the Business Meeting of the Astronomy and World Heritage Working Group held on Thursday August 6, 2009. This was the first formal Business Meeting of the Working Group since its formation following the signing of the Memorandum of Understanding between the IAU and UNESCO on Astronomy and World Heritage in October 2008.
CdS nanocrystals embedded in sodium borosilicate glass were synthesized through sol-gel process. The CdS nanocrystals were usually 10 to 20 nm in size. The microstructure of CdS nanocrystals was determined to be of the hexagonal phase. The morphology and microstructure of the glass were examined using diverse techniques including scanning-probe microscopy (SPM), x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersion x-ray spectra (EDAX), and high-resolution TEM (HRTEM). The linear optical absorption spectrum of the glass showed a blue shift as a result of quantum-size effect. Furthermore, the third-order optical nonlinearities of the glass were studied by Z-scan technique at a wavelength of 770 nm. The results showed that the third-order optical nonlinear refractive index γ, absorption coefficient β, and susceptibility χ(3) were determined to be −2.16 × 10−16 m2/W, 6.32 × 10−11 m/W, and 1.20 × 10−10 esu, respectively, which were greater than those reported previously for CdS nanocrystals embedded in different matrices.
A cDNA library was constructed from the heading leaf in the early phase of the heading stage of Chinese cabbage (Brassica rapa L. ssp. pekinensis). By sequencing the randomly selected clones, 1363 sequences longer than 200 bp were found, with better trace data. After removing the poly(A) and contamination sequences, 1162 ESTs longer than 150 bp were obtained, of which 1102 shared significant similarity with known sequences in protein and nucleotide databases of the National Center for Biotechnology Information (NCBI) as revealed by searches using the BLASTX and BLASTN engines. Functional assignment of the ESTs was based on the method used in the Arabidopsis thaliana genome-sequencing project. About 77% of the putative protein sequences with known biological functions best matched with those of A. thaliana deposited in the non-redundant database of NCBI. These data suggest that Chinese cabbage is closely related to A. thaliana. This result is different from that reported in other Brassica species. At nucleotide level, however, 51% of the ESTs were homologous to those deposited for A. thaliana when all ESTs were searched against the est-others database. In addition, 60 ESTs had no homology with any of the plant gene sequences deposited in GenBank. These ESTs are very important for understanding the unique developmental process of Chinesecabbage and elaborating its genetic mapping. Among the genes with assigned functions, the most abundant representatives were those involved in protein synthesis and energy metabolism. With the 1162 ESTs, 895 non-redundant contigs were generated after being aligned using the Seqman II module of DNAStar software at the threshold of more than 80% homology over a minimum of 40 base pairs. Of these, 723 were singletons containing only one EST sequence, indicating that many kinds of such genes are expressed in the heading leaf of Chinese cabbage. An expression profile of Chinese cabbage heading leaf with the 1162 ESTs was therefore acquired in this work. This could be very useful for uncovering the mechanism of the heading process, which is the most obvious characteristic of Chinese cabbage and perhaps other related species, such as Brassica oleracea. This work could accelerate the finding and characterization of genes specifically expressed in the heading stage of Chinese cabbage.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.