We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This practical and comprehensive resource is a must-read for anyone interested in engaging with mental health research. Covering a range of topics and methodologies, this book provides readers with everything they need to know to navigate mental health research today. Focusing on topics relevant to today's early career researchers, chapters cover the principles of research, tools and methodologies, both quantitative and qualitative, and contemporary applications. It also covers ethics, equity and co-production considerations. The inclusion of a Current Trends feature explores key concepts in current areas of lively discourse. This book will be useful for psychiatrists, clinical psychologists and other mental health professionals interested in engaging with and conducting mental health research. It will also be a valuable text for MRCPsych candidates sitting their Critical Review paper.
This is a proof-of-concept study to compare the effects of a 2-week program of “Remind-to-move” (RTM) treatment using closed-loop and open-loop wearables for hemiparetic upper extremity in patients with chronic stroke in the community. The RTM open-loop wearable device has been proven in our previous studies to be useful to address the learned nonuse phenomenon of the hemiparetic upper extremity. A closed-loop RTM wearable device, which emits reminding cues according to actual arm use, was developed in this study. A convenience sample of 16 participants with chronic unilateral stroke recruited in the community was engaged in repetitive upper extremity task-specific practice for 2 weeks while wearing either a closed-loop or an open-loop ambulatory RTM wearable device on their affected hand for 3 hrs a day. Evaluations were conducted at pre-/post-intervention and follow-up after 4 weeks using upper extremity motor performance behavioral measures, actual arm use questionnaire, and the kinematic data obtained from the device. Results showed that both open-loop and closed-loop training groups achieved significant gains in all measures at posttest and follow-up evaluations. The closed-loop group showed a more significant improvement in movement frequency, hand functions, and actual arm use than did the open-loop group. Our findings supported the use of closed-loop wearables, which showed greater effects in terms of promoting the hand use of the hemiparetic upper extremity than open-loop wearables among patients with chronic stroke.
To examine the relationship between children’s adaptive functioning and neighborhood resources – such as school quality, access to healthy food, green spaces, and housing quality – using a large, diverse clinical outpatient sample.
Method:
Pediatric outpatients (N = 6,942; age M = 10.44 years; 67.0% male; 50.3% White; 33.9% Medicaid), aged 1-18, who underwent neuropsychological or psychological evaluation were included if their caregiver completed the Adaptive Behavior Assessment System, 3rd Edition (ABAS-3) and had a nationally normed Child Opportunity Index (COI) score, a composite measure of 29 geo-coded neighborhood characteristics.
Results:
Children from higher-opportunity neighborhoods demonstrated significantly stronger adaptive functioning across conceptual, social, and practical domains. Those in the top 40% of neighborhood advantage exhibited stronger adaptive skills than those in the bottom 60%. Neighborhood resources and family financial resources were associated with greater adaptive skills beyond child age, sex, and racial/ethnic background.
Conclusion:
Neighborhood resources are linked to children’s adaptive functioning, possibly due to increased opportunities to practice these skills in safer, more supportive environments. These findings emphasize the importance of considering environmental factors in assessing adaptive skills and highlight the need for public health investments and legislation related to community resources.
Background: Minimally invasive endoscopic techniques via the transorbital approach (ETOA) is emerging as an alternative approach for addressing skull base tumours. This study aims to showcase our institution’s 8 year experience in using ETOA, detailing the surgical technique employed and presenting comprehensive patient outcomes. Methods: A retrospective analysis was conducted on data from 32 patients who underwent ETOA within the past eight years. Demographic data was obtained as well as information on surgical approaches, intra-operative findings, recurrence and complications. Results: 33 ETOA procedures were performed on 29 patients, with an average age of 45, 14 of whom were women. The superior orbital corridor was utilized in 100% of cases, and in 79.17%, ETOA was complemented by a transnasal approach. Spheno-orbital meningioma accounted for the most common surgical indication (36.36%, n=12, followed by lateral frontal sinus mucocele (18.75%, n=6). The median length of stay was one day.Transient V1 numbness was the primary complication (33%, n=8), and 18.75% (n=6) necessitated another surgery. Notably, no mortality was associated with this procedure. Conclusions: Our institution’s experience underscores the notable safety and effectiveness of ETOA, The main complications being transient V1 numbness, proptosis, transient diplopia. Revision surgery was only required in 6 out of 33 cases.
Background: Increased availability of genetic testing has led to increased burden of follow up of variants of uncertain significance (VUS). As of January 2025, 327 VUS were identified patients at BC Children’s Hospital. We propose a pipeline to triage and follow up of patients with identified VUS to clarify diagnosis through paternal testing. Methods: Of the 327 patients with VUS, 13 patients with high clinical suspicion for a genetic disorder were identified by their neurologist. Initial chart review for each patient was performed. Clinical phenotype data and the patient’s variant were inputted into the online tool Franklin. This program generates a variant interpretation based on 17/ 28 criteria in ACMG scoring. For each patient the variant would be assumed to be de novo in order to determine if parental testing could change variant classification. Results: 5/13 of the patients had suggested reclassification of variants. 6/13 of the patients would have reclassification of variant to likely pathogenic/pathogenic if the variant was found to be de novo, suggesting a need for paternal testing. Conclusions: This highlights a novel clinical pipeline to improve expediency and triaging of VUS reclassification for paternal testing in epilepsy genomics.
Background: Our prior six-year review (n=2165) revealed 24% of patients undergoing posterior decompression surgeries (laminectomy or discectomy) sought emergency department (ED) care within three months post-surgery. We established an integrated Spine Assessment Clinic (SAC) to enhance patient outcomes and minimize unnecessary ED visits through pre-operative education, targeted QI interventions, and early post-operative follow-up. Methods: We reviewed 13 months of posterior decompression data (n=205) following SAC implementation. These patients received individualized, comprehensive pre-operative education and follow-up phone calls within 7 days post-surgery. ED visits within 90 days post-surgery were tracked using provincial databases and compared to our pre-SAC implementation data. Results: Out of 205 patients, 24 (11.6%) accounted for 34 ED visits within 90 days post-op, showing a significant reduction in ED visits from 24% to 11.6%, and decreased overall ED utilization from 42.1% to 16.6% (when accounting for multiple visits by the same patient). Early interventions including wound monitoring, outpatient bloodwork, and prescription adjustments for pain management, helped mitigate ED visits. Patient satisfaction surveys (n=62) indicated 92% were “highly satisfied” and 100% would recommend the SAC. Conclusions: The SAC reduced ED visits after posterior decompression surgery by over 50%, with pre-operative education, focused QI initiatives, and its individualized, proactive approach.
Background: Recent research has demonstrated that DBS sites in Alzheimer’s (AD) and Parkinson’s (PD) influencing cognition are functionally connected to the subiculum. However, the results are mixed, and it is unclear how or if DBS site-subiculum connectivity can be optimized to improve patient cognition. Methods: We studied how subiculum connectivity influenced cognitive outcomes in both PD (subthalamic nucleus) and AD (fornix) DBS patients (total n = 110). We first confirmed DBS site-subiculum connectivity had opposite cognitive effects in each disease. We next investigated patient factors underlying these opposing effects. Lastly, we related our findings back to clinical practice to guide DBS programming in PD and AD. Results: DBS site-subiculum connectivity correlated with cognitive improvement in AD but decline in PD. This was dependent upon hippocampal atrophy; such that higher subiculum connectivity was beneficial when the hippocampus was atrophic but deleterious when it was intact. Finally, we related our findings back to anatomy with cadaveric dissections and present how DBS stimulation can be optimized to improve patient cognition. Conclusions: DBS site-subiculum connectivity influences cognition but depends on patient factors. Thus, to optimize cognition based on patient factors, DBS electrodes can be programmed to stimulate subregions with higher or lower subiculum connectivity.
Background: Anti-CD20 monoclonal antibodies are highly effective for RMS treatment. Ocrelizumab (OCR) is standard, while Rituximab (RTX) is an alternative. The impact of anti-CD20 therapies on immune markers remains understudied, though deficiencies are frequently observed and have been associated with increased risk of infection. Our objective is to characterize and compare lymphocyte, neutrophil, and immunoglobulin levels in OCR- versus RTX-treated persons with RMS. Methods: This retrospective chart review included RMS patients on OCR or RTX (2017–2023). Pre- and post-treatment levels of lymphocytes, neutrophils, and immunoglobulins (IgG, IgA, IgM) were analyzed. Kaplan-Meier curves, log-rank tests, and Cox proportional hazards models were used for survival analysis. Results: 350 patients (OCR=175, RTX=175) were included. The mean treatment length was 60.9 (SD 19.1) months for OCR and 42.7 (SD 19.5) months for RTX. RTX was associated with a significantly shorter time to IgM deficiency (29.6 vs. 40.0 months, p=0.02). Cox analysis confirmed RTX increased IgM deficiency risk (HR=1.54, 95% CI: 1.06-2.23, p=0.02). No differences were seen for lymphocytes, neutrophils, IgG, or IgA. Conclusions: RTX was associated with a shorter time to and increased risk of IgM hypogammaglobulinemia compared to OCR, highlighting the importance of long-term monitoring. Further research is needed to guide treatment decisions.
Background: Amyotrophic Lateral Sclerosis (ALS) leads to progressive functional decline and reduced survival. Identifying clinical predictors like ALSFRS-R and FVC is essential for prognosis and disease management. Understanding progression profiles based on diagnostic characteristics supports clinical trial design and assessment of treatment response. This study evaluates disease progression and survival predictors in ALS patients from the CNDR. Methods: 1565 ALS patients in the CNDR were analyzed to assess baseline ALSFRS-R, FVC, time from symptom onset to diagnosis, and their association with disease progression and survival. Results: At diagnosis, ALSFRS-R was 44.7 (SD = 5.46), with 72.3% scoring ≥44. Mean FVC was 84.2% (SD = 23.3), with 78.3% of patients having FVC ≥65%. ALSFRS-R declined at 1.06 points/month (SD = 1.33), with faster progression in patients diagnosed within 24 months (1.61 points/month). Patients with ALSFRS-R ≥44 had a median survival of 41.8 months, compared to 30.9 months for those <44 (p < 0.001). Similarly, FVC ≥65% was associated with longer survival (35.4 vs. 29.5 months, p = 0.002). Conclusions: ALSFRS-R and FVC at diagnosis predict survival and inform clinical decision-making. These findings highlight the importance of early diagnosis and targeted interventions to slow disease progression and improve patient outcomes.
The Bray–Liebhafsky reaction is one of many intricate chemical systems that is known to exhibit periodic behaviour. Although the underlying chemistry is somewhat complicated and involves at least ten chemical species, in a recent work we suggested a reduced two-component model of the reaction involving the concentrations of iodine and iodous acid. Although it is drastically simplified, this reduced system retains enough structure so as to exhibit many of the oscillatory characteristics seen in experimental analyses. Here, we consider the possibility of spatial patterning in a nonuniformly mixed solution. Since many practical demonstrations of chemical oscillations are undertaken using circular containers such as beakers or Petri dishes, we develop both linearized and nonlinear pattern solutions in terms of cylindrical coordinates. These results are complemented by an analysis of the patterning that might be possible within a rectangular domain. The simulations give compelling evidence that spatial patterning may well be feasible in the Bray–Liebhafsky process.
Diagnosing HIV-Associated Neurocognitive Disorders (HAND) requires attributing neurocognitive impairment and functional decline at least partly to HIV-related brain effects. Depressive symptom severity, whether attributable to HIV or not, may influence self-reported functioning. We examined longitudinal relationships among objective global cognition, depressive symptom severity, and self-reported everyday functioning in people with HIV (PWH).
Methods:
Longitudinal data from 894 PWH were collected at a university-based research center (2002–2016). Participants completed self-report measures of everyday functioning to assess both dependence in instrumental activities of daily living (IADL) and subjective cognitive difficulties at each visit, along with depressive symptom severity (BDI-II). Multilevel modeling examined within- and between-person predictors of self-reported everyday functioning outcomes.
Results:
Participants averaged 6 visits over 5 years. Multilevel regression showed a significant interaction between visit-specific global cognitive performance and mean depression symptom severity on likelihood of dependence in IADL (p = 0.04), such that within-person association between worse cognition and greater likelihood of IADL dependence was strongest among individuals with lower mean depressive symptom severity. In contrast, participants with higher mean depressive symptom severity had higher likelihoods of IADL dependence regardless of cognition. Multilevel modelling of subjective cognitive difficulties showed no significant interaction between global cognition and mean depressive symptom severity (p > 0.05).
Conclusions:
The findings indicate a link between cognitive abilities and IADL dependence in PWH with low to moderate depressive symptoms. However, those with higher depressive symptoms severity report IADL dependence regardless of cognitive status. This is clinically significant because everyday functioning is measured through self-report rather than performance-based assessments.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
Protein fermentation in the human gut is often associated with adverse health effects. Hence, understanding the fermentation characteristics of dietary undigested proteins is important for a comprehensive nutritional value of foods. This study investigated the protein fermentation kinetics of diet-derived proteins from thirty-one different foods using an in vitro model and human faecal inoculum. The undigested diet-derived protein substrate originated from porcine ileal digesta obtained from assessment of the digestible indispensable amino acid score (DIAAS) of the foods. Significant variations in fermentation kinetic parameters, particularly in maximum gas production rate (Rmax) and time to reach cumulative gas production (GP) from the substrate (TGPs), were observed. The Rmax ranged from 15·5 (se 0·7) ml/h for wheat bran-derived to 24·5 (se 0·9) ml/h for oatmeal-derived proteins. Egg-derived proteins had the shortest TGPs (14·7 (se 0·7) h), while mushroom-derived proteins had the longest (27·6 (se 7·1) h). When foods were categorised into five groups (‘animal protein’, ‘grains’, ‘legumes’, ‘fungi, algae and microorganisms’ and ‘others’), no significant differences were found in fermentation kinetics parameters. Samples were additionally incubated with porcine inoculum to assess potential donor-species effects. Human inoculum showed significantly lower Rmax, cumulative GP and microbiota turnover than porcine inoculum, indicating reduced fermentative activity. Linear regression analysis revealed correlations between human and porcine-derived inoculum only for Rmax (R2 = 0·78, P < 0·01) and TGPs (R² = 0·17, P < 0·05). These findings underscore the importance of using human inoculum in in vitro studies to better predict health implications of foods with DIAAS values.
Market-oriented theorizing fails to capture the reality of government intervention in the global economy. Trade and investment measures by governments around the globe, designed to protect strategic industries and maintain a security of supply in the wake of a return to strategic competition, are emblematic of the need to shift our analysis of the global economy. We have labeled this phenomenon “new economic statecraft” and have invited this special issue to examine this phenomenon across countries and sectors of the global economy. Traditionally, economists have largely focused on efficiency gains and the reduction of transaction costs rather than considering the political and strategic aspects of trade and capital flows. This existing analysis fails to capture the reality that many governments are using economic levers to compete in “strategic” sectors of their economy through intervention at the border, behind the border, and beyond the border. To analyze these phenomena, this article and the associated special issue investigates five theorized drivers of state intervention in the global economy to explain when and how governments intervene in their markets. We also hope that this approach can help guide further empirical work on state-business relations and global political and economic competition.
Evidence-based concussion practices have been codified into legislation, yet implementation has been narrowly evaluated. We examined implementation of concussion practices in Massachusetts high schools and adopted a disproportionality lens to assess the relationship between school sociodemographic and policy implementation and examine whether differences in policy implementation represent systematic disparities consistent with the disproportionality literature.
Methods
A cross-sectional survey was sent to Massachusetts high school nurses (N=304). Responses (n=201; 68.1% response rate) were tallied so that higher scores indicated greater policy implementation. School demographic data were collected using publicly available datasets and were linked to survey responses. Descriptive statistics, correlations, k-means clustering, and groupwise comparisons were conducted.
Results
Policy implementation is varied across schools and is associated with school sociodemographic variables. As percentages of marginalized identities in student population increased, implementation rates decreased. K-means cluster analysis revealed two discrete groups based on policy implementation scores, with significant differences in sociodemographic variables between groups. Schools with low implementation scores had a greater percentage of students who identified as African American/Black and nurses with less experience.
Conclusions
Findings highlight current disparities in the implementation of concussion management policies and support adoption of a disproportionality lens in this sphere.
The outer solar system is theoretically predicted to harbour an undiscovered planet, often referred to as Planet Nine. Simulations suggest that its gravitational influence could explain the unusual clustering of minor bodies in the Kuiper Belt. However, no observational evidence for Planet Nine has been found so far, as its predicted orbit lies far beyond Neptune, where it reflects only a faint amount of Sunlight. This work aims to find Planet Nine candidates by taking advantage of two far-infrared all-sky surveys, which are IRAS and AKARI. The epochs of these two surveys were separated by 23 years, which is large enough to detect Planet Nine’s $\sim3'$/year orbital motion. We use a dedicated AKARI Far-Infrared point source list for the purpose of our Planet Nine search — AKARI-FIS Monthly Unconfirmed Source List (AKARI-MUSL), which includes sources detected repeatedly only in hours timescale, but not after months. AKARI-MUSL is more advantageous than the AKARI Bright Source Catalogue (AKARI-BSC) for detecting moving and faint objects like Planet Nine with a twice-deeper flux detection limit. We search for objects that moved slowly between IRAS and AKARI detections given in the catalogues. First, we estimated the expected flux and orbital motion of Planet Nine by assuming its mass, distance, and effective temperature to ensure it can be detected by IRAS and AKARI, then applied the positional and flux selection criteria to narrow down the number of sources from the catalogues. Next, we produced all possible candidate pairs including one IRAS source and one AKARI source whose angular separations were limited between 42′ and $69.6'$, corresponding to the heliocentric distance range of 500 – 700 AU and the mass range of 7 – 17M$_{\oplus}$. There are 13 candidate pairs obtained after the selection criteria. After image inspection, we found one good candidate, of which the IRAS source is absent from the same coordinate in the AKARI image after 23 years and vice versa. However, AKARI and IRAS detections are not enough to determine the full orbit of this candidate. This issue leads to the need for follow-up observations, which will determine the Keplerian motion of our Planet Nine candidate.
An unusual orbital element clustering of Kuiper belt objects (KBOs) has been observed. The most promising dynamic solution is the presence of a giant planet in the outer Solar system, Planet Nine. However, due to its extreme distance, intensive searches in optical have not been successful. We aim to find Planet Nine in the far-infrared, where it has the peak of the black body radiation, using the most sensitive all-sky far-infrared survey to date, AKARI. In contrast to optical searches, where the energy of reflected sunlight decreases by $d^{4}$, thermal radiation in the infrared decreases with the square of the heliocentric distance $d^{2}$. We search for moving objects in the AKARI Single Scan Detection List. We select sources from a promising region suggested by an N-body simulation from Millholland and Laughlin 2017: $30^{\circ}\lt$ R.A. $\lt50^{\circ}$ and $-20^{\circ}\lt$ Dec. $\lt20^{\circ}$. Known sources are excluded by cross-matching AKARI sources with 9 optical and infrared catalogues. Furthermore, we select sources with small background strength to avoid sources in the cirrus. Since Planet Nine is stationary in a timescale of hours but moves on a monthly scale, our primary strategy is to select slowly moving objects that are stationary in 24 h but not in six months, using multiple single scans by AKARI. The selected slowly moving AKARI sources are scrutinised for potential contamination from cosmic rays. Our analysis reveals two possible Planet Nine candidates whose positions and flux are within the theoretical prediction ranges. These candidates warrant further investigation through follow-up observations to confirm the existence and properties of Planet Nine.