We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To investigate the association between suicide death and serum cholesterol levels as measured at times close to suicide death.
Methods:
We conducted a nested case-control study of 41 cases of suicide deaths and 205 matched controls with serum total cholesterol (TC) levels till 3 years before suicide death in a large cohort of Japanese workers.
Results:
Individuals in the lowest versus highest tertile/predefined category of TC in a Japanese working population had a three- to four-fold greater risk of suicide death. Each 10 mg/dl decrement of average TC was associated with an 18% increased chance of suicide death (95% confidence interval, 2–35%). Similar results were found for TC levels at each year.
Conclusion:
These results suggest that a low serum TC level in recent past is associated with an increased risk of suicide death.
This study investigates the rates of technological progress, total output growth, and per capita output growth when population growth is negative using a semiendogenous research and development (R&D) growth model. The analysis shows that within a finite time horizon, the employment share of the final goods sector reaches unity and that of the R&D sector reaches zero; accordingly, the rate of technological progress tends toward zero. In this case, the growth rate of per capita output asymptotically approaches a positive value.
We conducted a double-blind, placebo-controlled trial to evaluate the effect of heat-killed cells of Lactococcus lactis strain H61 on various skin properties of Japanese women. Volunteers (age 31–62 years) were randomly assigned to receive test food with or without 60 mg of heat-killed strain H61 (fifteen women in each group; H61 and control groups, respectively) daily for 8 weeks. Results were analysed for three age categories (30s, 40s and 50–60s). Compared with that at week 0, skin hydration at the inner forearm at weeks 4 and 8 decreased in all volunteers (except those in their 50–60s) because of the environmental change from autumn to winter. The oldest H61 group maintained skin hydration at the inner forearm throughout the study. Skin elasticity and melanin content in the cheek decreased and sebum content increased throughout the test period due to seasonal environmental change, regardless of age or H61 treatment. Self-evaluation scores for apparent hair follicles and dryness of the throat at week 8 were higher in the overall H61 group than in the combined placebo group. The 30s H61 group noted marked improvements in self-surveyed skin elasticity at week 8 compared with at week 0 and with the placebo group at week 8. The results of the present study indicate that oral intake of heat-killed cells of L. lactis strain H61 can improve some skin properties and body characteristics in women. This strain would probably be useful in increasing the quality of life in an ageing population.
The senescence-accelerated mouse develops normally until 5–6 months of age and then displays rapid and irreversible advancement of senescence manifesting as clinical signs and gross lesions. To clarify the effect of lactic acid bacteria on the physiological changes with increasing age, heat-killed Lactococcus lactis G50 was administered to 1-month-old senescence-accelerated-prone mouse (SAMP)6 mice for 11 months, a senescence-accelerated mouse strain that develops senile osteoporosis. Mice fed G50 gained more weight than the control mice (not fed G50) during the feeding experiment. Faecal IgA levels in the mice fed G50 at 3 months were higher than those of the control mice but decreased to control levels with increasing age. The numbers of viable cells of Bacteroides sp., Lactobacillus sp., Staphylococcus sp., Enterococcus/Streptococcus sp. and Enterobacteriaceae sp. in faeces were similar for mice fed the G50 and control diets at any age, but strain G50 suppressed the intestinal growth of H2S-producing bacteria. Bone density of the thigh bone did not differ between aged G50 and control mice. Strain G50 would be a beneficial bacterium for the enhancement of intestinal immunity during youth and to suppress the growth of harmful intestinal bacteria. The applicability of strain G50 for the food and animal industries has been proposed in the present study.
The effects of oral administration of a lactococcal strain on physiological changes associated with ageing were investigated using senescence-accelerated mice (SAM). SAM develop normally, but then show an early onset and irreversible advancement of senescence. SAMP6 is a SAM strain that develops osteoporosis with ageing. Oral administration of heat-killed Lactococcus lactis subsp. cremoris H61 (strain H61) to aged SAMP6 mice was associated with reduced bone density loss, a suppression of incidence of skin ulcers and reduced hair loss, compared with controls. Spleen cells from mice fed strain H61 produced more interferon-γ and IL-12 than those from control mice, suggesting that administration of strain H61 altered immune responses. The numbers of viable cells of Bifidobacterium sp., Bacteroides sp. and Enterococcus sp. in faeces were similar for mice fed the strain H61 and control diets, but counts for Staphylococcus sp. were significantly lower (P < 0·05) in mice fed strain H61. Mice fed strain H61 had similar serum concentrations of thiobarbituric acid-reactive substances as in controls, indicating a lack of effect on lipid peroxidation status. Administration of living cells of strain H61 or fermented milk containing strain H61 was also associated with a suppression of incidence of skin ulcers and reduced hair loss. These results indicate that oral administration of strain H61 has the potential to suppress some of the manifestations associated with ageing.
Room-temperature epitaxy of AlN thin films on sapphire (0001) substrates was achieved by pulsed laser deposition using an epitaxial NiO ultrathin buffer layer (approximately 6 nm thick). Four-circle x-ray diffraction analysis indicates a double heteroepitaxial structure of AlN (0001)/NiO(111)/sapphire (0001) with the epitaxial relationship of AlN [10-10] ‖ NiO [11-2] ‖ sapphire [11-20]. The surface morphology of room-temperature grown AlN thin films was found to be atomically smooth and nanostepped, reflecting the surface of the ultrasmooth sapphire substrate with 0.2-nm-high steps.
a-/b-axis-oriented epitaxial bismuth layer-structured ferroelectric thin films were epitaxially grown on (101)-oriented oxide with rutile structure. The long-range lattice matching between the ferroelectric layer and the bottom rutile layer, particularly the number of rutile units facing one ferroelectric unit and the surface orientation, were discussed for (100)(010)Bi4Ti3O12//(101)TiO2 structure. Cross sectional transmission electron microscope analysis suggests that seven rutile units lie under one a-/b-axis-oriented Bi4Ti3O12 unit with lower misfit dislocation density comparing to eight rutile units by one Bi4Ti3O12 model. Based on this result, the surface orientation at the interface was simulated to give us an appropriate ion alignment model. The titanium layer in the (101)TiO2 structure is most likely to match with the oxygen layer in the a-/b-axis-oriented Bi4Ti3O12 film.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.