We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
New Zealand and Australian governments rely heavily on voluntary industry initiatives to improve population nutrition, such as voluntary front-of-pack nutrition labelling (Health Star Rating [HSR]), industry-led food advertising standards, and optional food reformulation programmes. Research in both countries has shown that food companies vary considerably in their policies and practices on nutrition(1). We aimed to determine if a tailored nutrition support programme for food companies improved their nutrition policies and practices compared with control companies who were not offered the programme. REFORM was a 24-month, two-country, cluster-randomised controlled trial. 132 major packaged food/drink manufacturers (n=96) and fast-food companies (n=36) were randomly assigned (2:1 ratio) to receive a 12-month tailored support programme or to the control group (no intervention). The intervention group was offered a programme designed and delivered by public health academics comprising regular meetings, tailored company reports, and recommendations and resources to improve product composition (e.g., reducing nutrients of concern through reformulation), nutrition labelling (e.g., adoption of HSR labels), marketing to children (reducing the exposure of children to unhealthy products and brands) and improved nutrition policy and corporate sustainability reporting. The primary outcome was the nutrient profile (measured using HSR) of company food and drink products at 24 months. Secondary outcomes were the nutrient content (energy, sodium, total sugar, and saturated fat) of company products, display of HSR labels on packaged products, company nutrition-related policies and commitments, and engagement with the intervention. Eighty-eight eligible intervention companies (9,235 products at baseline) were invited to participate, of whom 21 accepted and were enrolled in the REFORM programme (delivered between September 2021 and December 2022). Forty-four companies (3,551 products at baseline) were randomised to the control arm. At 24 months, the model-adjusted mean HSR of intervention company products was 2.58 compared to 2.68 for control companies, with no significant difference between groups (mean difference -0.10, 95% CI -0.40 to 0.21, p-value 0.53). A per protocol analysis of intervention companies who enrolled in the programme compared to control companies with no major protocol violation also found no significant difference (2.93 vs 2.64, mean difference 0.29, 95% CI -0.13 to 0.72, p-value 0.18). We found no significant differences between the intervention and control groups in any secondary outcome, except in total sugar (g/100g) where the sugar content of intervention company products was higher than that of control companies (12.32 vs 6.98, mean difference 5.34, 95% CI 1.73 to 8.96, p-value 0.004). The per-protocol analysis for sugar did not show a significant difference (10.47 vs 7.44, mean difference 3.03, 95% CI -0.48 to 6.53, p-value 0.09).In conclusion, a 12-month tailored nutrition support for food companies did not improve the nutrient profile of company products.
Finsler geometry generalises Riemannian geometry in the same sense that Banach spaces generalise Hilbert spaces. This book presents an expository account of seven important topics in Riemann–Finsler geometry, ones which have undergone significant development but have not had a detailed pedagogical treatment elsewhere. Each article will open the door to an active area of research, and is suitable for a special topics course in graduate-level differential geometry. The contributors consider issues related to volume, geodesics, curvature, complex differential geometry and parametrised jet bundles, and include a variety of instructive examples.
The Australian SKA Pathfinder (ASKAP) offers powerful new capabilities for studying the polarised and magnetised Universe at radio wavelengths. In this paper, we introduce the Polarisation Sky Survey of the Universe’s Magnetism (POSSUM), a groundbreaking survey with three primary objectives: (1) to create a comprehensive Faraday rotation measure (RM) grid of up to one million compact extragalactic sources across the southern $\sim50$% of the sky (20,630 deg$^2$); (2) to map the intrinsic polarisation and RM properties of a wide range of discrete extragalactic and Galactic objects over the same area; and (3) to contribute interferometric data with excellent surface brightness sensitivity, which can be combined with single-dish data to study the diffuse Galactic interstellar medium. Observations for the full POSSUM survey commenced in May 2023 and are expected to conclude by mid-2028. POSSUM will achieve an RM grid density of around 30–50 RMs per square degree with a median measurement uncertainty of $\sim$1 rad m$^{-2}$. The survey operates primarily over a frequency range of 800–1088 MHz, with an angular resolution of 20” and a typical RMS sensitivity in Stokes Q or U of 18 $\mu$Jy beam$^{-1}$. Additionally, the survey will be supplemented by similar observations covering 1296–1440 MHz over 38% of the sky. POSSUM will enable the discovery and detailed investigation of magnetised phenomena in a wide range of cosmic environments, including the intergalactic medium and cosmic web, galaxy clusters and groups, active galactic nuclei and radio galaxies, the Magellanic System and other nearby galaxies, galaxy halos and the circumgalactic medium, and the magnetic structure of the Milky Way across a very wide range of scales, as well as the interplay between these components. This paper reviews the current science case developed by the POSSUM Collaboration and provides an overview of POSSUM’s observations, data processing, outputs, and its complementarity with other radio and multi-wavelength surveys, including future work with the SKA.
Splashes from impacts of drops on liquid pools are ubiquitous and generate secondary droplets important for a range of applications in healthcare, agriculture and industry. The physics of splash continues to comprise central unresolved questions. Combining experiments and theory, here we study the sequence of topological changes from drop impact on a deep, inviscid liquid pool, with a focus on the regime of crown splash with developing air cavity below the interface and crown sheet above it. We develop coupled evolution equations for the cavity–crown system, leveraging asymptotic theory for the cavity and conservation laws for the crown. Using the key coupling of sheet and cavity, we derive similarity solutions for the sheet velocity and thickness profiles, and asymptotic prediction of the crown height evolution. Unlike the cavity whose expansion is opposed by gravitational effects, the axial crown rise is mostly opposed by surface tension effects. Moreover, both the maximum crown height and the time of its occurrence scale as ${\textit {We}}^{5/7}$. We find our analytical results to be in good agreement with our experimental measurements. The cavity–crown coupling achieved enables us to obtain explicit estimates of the crown splash spatio-temporal unsteady dynamics, paving the way to deciphering ultimate splash fragmentation.
Fragmentation of a fluid body into droplets underlies many contamination and disease transmission processes where pathogens are transported in a liquid phase. An important class of such processes involves formation of a fluid ligament and its destabilization into droplets. Inertial detachment (Gilet & Bourouiba, J. R. Soc. Interface, vol. 12, 2015, 20141092) is one of these modes: upon impact on a sufficiently compliant substrate, the substrate's motion can transfer its impulse to a contaminated sessile drop residing on it. The fragmentation of the sessile drop is efficient at producing contaminated ejected droplets with little dilution. Inertial detachment, particularly from substrates of intermediate wetting, is also interesting as a fundamental fragmentation process on its own merit, involving the asymmetric stretching of the sessile drop under impulsive axial forcing with one-sided pinning due to the substrate's intermediate wetting. Our experiments show that the radius, $R_{tip}$, of the tip drop ejected become insensitive to the Bond number value for $Bo>1$. Here, $Bo$ quantifies the inertial effects via the relative axial impulsive acceleration compared with capillarity. The time, $t_{tip}$, of tip-drop breakup is also insensitive to $Bo$. Combining experiments, theory and validated numerics, we decipher the selection of $R_{tip}$ and its sensitivity to the surface-wetting and substrate foot dynamics. Using asymptotic theory in the large $Bo$ limit for which the thin-film/slender-jet approximations hold, we derive a reduced physical model that predicts $R_{tip}$ consistent with our experiments. Finally, we discuss how pathogen physical properties (e.g. wetting and buoyancy) within the sessile drop determine their distribution in the tip and secondary fragmentation droplets.
We present the Pilot Survey Phase 2 data release for the Wide-field ASKAP L-band Legacy All-sky Blind surveY (WALLABY), carried-out using the Australian SKA Pathfinder (ASKAP). We present 1760 H i detections (with a default spatial resolution of 30′′) from three pilot fields including the NGC 5044 and NGC 4808 groups as well as the Vela field, covering a total of $\sim 180$ deg$^2$ of the sky and spanning a redshift up to $z \simeq 0.09$. This release also includes kinematic models for over 126 spatially resolved galaxies. The observed median rms noise in the image cubes is 1.7 mJy per 30′′ beam and 18.5 kHz channel. This corresponds to a 5$\sigma$ H i column density sensitivity of $\sim 9.1\times10^{19}(1 + z)^4$ cm$^{-2}$ per 30′′ beam and $\sim 20$ km s$^{-1}$ channel and a 5$\sigma$ H i mass sensitivity of $\sim 5.5\times10^8 (D/100$ Mpc)$^{2}$ M$_{\odot}$ for point sources. Furthermore, we also present for the first time 12′′ high-resolution images (“cut-outs”) and catalogues for a sub-sample of 80 sources from the Pilot Survey Phase 2 fields. While we are able to recover sources with lower signal-to-noise ratio compared to sources in the Public Data Release 1, we do note that some data quality issues still persist, notably, flux discrepancies that are linked to the impact of side lobes associated with the dirty beams due to inadequate deconvolution. However, in spite of these limitations, the WALLABY Pilot Survey Phase 2 has already produced roughly a third of the number of HIPASS sources, making this the largest spatially resolved H i sample from a single survey to date.
Unhealthy food environments are major drivers of obesity and diet-related diseases(1). Improving the healthiness of food environments requires a widespread organised response from governments, civil society, and industry(2). However, current actions often rely on voluntary participation by industry, such as opt-in nutrition labelling schemes, school/workplace food guidelines, and food reformulation programmes. The aim of the REFORM study is to determine the effects of the provision of tailored support to companies on their nutrition-related policies and practices, compared to food companies that are not offered the programme (the control). REFORM is a two-country, parallel cluster randomised controlled trial. 150 food companies were randomly assigned (2:1 ratio) to receive either a tailored support intervention programme or no intervention. Randomisation was stratified by country (Australia, New Zealand), industry sector (fast food, other packaged food/beverage companies), and company size. The primary outcome is the nutrient profile (measured using Health Star Rating [HSR]) of foods and drinks produced by participating companies at 24 months post-baseline. Secondary outcomes include company nutrition policies and commitments, the nutrient content (sodium, sugar, saturated fat) of products produced by participating companies, display of HSR labels, and engagement with the intervention. Eighty-three eligible intervention companies were invited to take part in the REFORM programme and 21 (25%) accepted and were enrolled. Over 100 meetings were held with company representatives between September 2021 and December 2022. Resources and tailored reports were developed for 6 touchpoints covering product composition and benchmarking, nutrition labelling, consumer insights, nutrition policies, and incentives for companies to act on nutrition. Detailed information on programme resources and preliminary 12-month findings will be presented at the conference. The REFORM programme will assess if provision of tailored support to companies on their nutrition-related policies and practices incentivises the food industry to improve their nutrition policies and actions.
The brain can be represented as a network, with nodes as brain regions and edges as region-to-region connections. Nodes with the most connections (hubs) are central to efficient brain function. Current findings on structural differences in Major Depressive Disorder (MDD) identified using network approaches remain inconsistent, potentially due to small sample sizes. It is still uncertain at what level of the connectome hierarchy differences may exist, and whether they are concentrated in hubs, disrupting fundamental brain connectivity.
Methods
We utilized two large cohorts, UK Biobank (UKB, N = 5104) and Generation Scotland (GS, N = 725), to investigate MDD case–control differences in brain network properties. Network analysis was done across four hierarchical levels: (1) global, (2) tier (nodes grouped into four tiers based on degree) and rich club (between-hub connections), (3) nodal, and (4) connection.
Results
In UKB, reductions in network efficiency were observed in MDD cases globally (d = −0.076, pFDR = 0.033), across all tiers (d = −0.069 to −0.079, pFDR = 0.020), and in hubs (d = −0.080 to −0.113, pFDR = 0.013–0.035). No differences in rich club organization and region-to-region connections were identified. The effect sizes and direction for these associations were generally consistent in GS, albeit not significant in our lower-N replication sample.
Conclusion
Our results suggest that the brain's fundamental rich club structure is similar in MDD cases and controls, but subtle topological differences exist across the brain. Consistent with recent large-scale neuroimaging findings, our findings offer a connectomic perspective on a similar scale and support the idea that minimal differences exist between MDD cases and controls.
To accelerate high-intensity heavy-ion beams to high energy in the booster ring (BRing) at the High-Intensity Heavy-Ion Accelerator Facility (HIAF) project, we take the typical reference particle 238U35+, which can be accelerated from an injection energy of 17 MeV/u to the maximal extraction energy of 830 MeV/u, as an example to study the basic processes of longitudinal beam dynamics, including beam capture, acceleration, and bunch merging. The voltage amplitude, the synchronous phase, and the frequency program of the RF system during the operational cycle were given, and the beam properties such as bunch length, momentum spread, longitudinal beam emittance, and beam loss were derived, firstly. Then, the beam properties under different voltage amplitude and synchronous phase errors were also studied, and the results were compared with the cases without any errors. Next, the beam properties with the injection energy fluctuation were also studied. The tolerances of the RF errors and injection energy fluctuation were dictated based on the CISP simulations. Finally, the effect of space charge at the low injection energy with different beam intensities on longitudinal emittance and beam loss was evaluated.
Shear instabilities at the interface of two fluids, such as classical Kelvin–Helmholtz instability (KHI), is the precursor of interface destabilization, leading to fluid fragmentation critical in a wide range of applications. While many insights into such instabilities are derived for steady background forcing flow, unsteady impulse flows are ubiquitous in environmental and physiological processes. Yet, little is understood on how unsteadiness shapes the initial interface amplification necessary for the onset of its topological change enabling subsequent fragmentation. In this combined theoretical, numerical and experimental study, we focus on an air-on-liquid interface exposed to canonical unsteady shear flow profiles. Evolution of the perturbed interface is formulated theoretically as an impulse-driven initial value problem using both linearized potential flow and nonlinear boundary integral methods. We show that the unsteady airflow forcing can amplify the interface's inherent gravity–capillary wave, up to wave-breaking transition, even if the configuration is classically KH stable. For impulses much shorter than the gravity–capillary wave period, it is the cumulative action, akin to total energy, that determines amplification, independent of the details of the impulse profile. However, for longer impulses, the details of the impulse profile become important. In this limit, akin to a resonance, it is the entangled history of the interaction of the forcing, i.e. the impulse, that changes rapidly in amplitude, and the response of the oscillating interface that matters. The insights gained are discussed and experimentally illustrated in the context of interface distortion and destabilization relevant for upper respiratory mucosalivary fluid fragmentation in violent exhalations.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
Visitors to zoos are a source of potential stress to certain captive-housed animals. Much research has focused on Europe and America, whereas the effect of human audiences on the behaviour of captive animals in Chinese parks has so far not been investigated. Sika deer (Cervus nippon) housed in Zhu-Yu-Wan Park, Yangzhou City, Jiangsu Province, China, were studied to determine the effect of different visitor density levels on the animals’ activity. From June 21 to December 10, 2006, and again from February 21 to July 10, 2007, 21 subjects were observed for 10 h per week for a total of 44 weeks. Continuous focal animal sampling was used to quantify behaviours, and visitor density was recorded every minute. Friedman's tests were used to examine the effects of visitor density on the behaviour of sika deer. Results showed that high visitor density was significantly related to foraging, resting, watching and ‘non-visible’ behaviours. The findings demonstrate that high numbers of visitors have an effect on the welfare of sika deer.
Accelerator-based hard X-ray sources (storage-ring synchrotron radiation, and X-ray free electron laser, or FEL) provide X-ray beams with high energy, high brilliance, short tens-of-picosecond-to-femtosecond pulses, and high coherence that are well suited for high-pressure studies. Developments in high-pressure technology, advanced X-ray optics and detectors, and synergies with theoretical computations have helped drive the rapid growth of high-pressure research using synchrotron and FEL X-rays. In this chapter, we present a brief review of the research field from a historical perspective, illustrated by selected aspects on research using the diamond anvil cell. We then highlight a few of the active areas in high-pressure X-ray research, including ultrahigh-pressure generation, amorphous materials at high pressure, phase transition kinetics, and materials metastability. Finally, an outlook on future directions and opportunities with the upgrades in both synchrotron and FEL facilities worldwide is presented.
Accelerator-based hard X-ray sources (storage-ring synchrotron radiation, and X-ray free electron laser, or FEL) provide X-ray beams with high energy, high brilliance, short tens-of-picosecond-to-femtosecond pulses, and high coherence that are well suited for high-pressure studies. Developments in high-pressure technology, advanced X-ray optics and detectors, and synergies with theoretical computations have helped drive the rapid growth of high-pressure research using synchrotron and FEL X-rays. In this chapter, we present a brief review of the research field from a historical perspective, illustrated by selected aspects on research using the diamond anvil cell. We then highlight a few of the active areas in high-pressure X-ray research, including ultrahigh-pressure generation, amorphous materials at high pressure, phase transition kinetics, and materials metastability. Finally, an outlook on future directions and opportunities with the upgrades in both synchrotron and FEL facilities worldwide is presented.
We present the Widefield ASKAP L-band Legacy All-sky Blind surveY (WALLABY) Pilot Phase I Hi kinematic models. This first data release consists of Hi observations of three fields in the direction of the Hydra and Norma clusters, and the NGC 4636 galaxy group. In this paper, we describe how we generate and publicly release flat-disk tilted-ring kinematic models for 109/592 unique Hi detections in these fields. The modelling method adopted here—which we call the WALLABY Kinematic Analysis Proto-Pipeline (WKAPP) and for which the corresponding scripts are also publicly available—consists of combining results from the homogeneous application of the FAT and 3DBarolo algorithms to the subset of 209 detections with sufficient resolution and $S/N$ in order to generate optimised model parameters and uncertainties. The 109 models presented here tend to be gas rich detections resolved by at least 3–4 synthesised beams across their major axes, but there is no obvious environmental bias in the modelling. The data release described here is the first step towards the derivation of similar products for thousands of spatially resolved WALLABY detections via a dedicated kinematic pipeline. Such a large publicly available and homogeneously analysed dataset will be a powerful legacy product that that will enable a wide range of scientific studies.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60\,\mathrm{deg}^{2}$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of $z \lesssim 0.08$. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of $z \approx 0.014$ is relatively low compared to the full WALLABY survey. The median galaxy H i mass is $2.3 \times 10^{9}\,{\rm M}_{{\odot}}$. The target noise level of $1.6\,\mathrm{mJy}$ per 30′′ beam and $18.5\,\mathrm{kHz}$ channel translates into a $5 \sigma$ H i mass sensitivity for point sources of about $5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$ across 50 spectral channels (${\approx} 200\,\mathrm{km \, s}^{-1}$) and a $5 \sigma$ H i column density sensitivity of about $8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$ across 5 channels (${\approx} 20\,\mathrm{km \, s}^{-1}$) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Background: Despite a higher prevalence of traumatic spinal cord injury (TSCI) amongst Canadian Indigenous peoples, there is a paucity of studies focused on Indigenous TSCI. We present the first Canada-wide study comparing TSCI amongst Canadian Indigenous and non-Indigenous peoples. Methods: This study is a retrospective analysis of prospectively-collected TSCI data from the Rick Hansen Spinal Cord Injury Registry (RHSCIR) from 2004-2019. We divided participants into Indigenous and non-Indigenous cohorts and compared them with respect to demographics, injury mechanism, level, severity, and outcomes. Results: Compared with non-Indigenous patients, Indigenous patients were younger, more female, less likely to have higher education, and less likely to be employed. The mechanism of injury was more likely due to assault or transportation-related trauma in the Indigenous group. The length of stay for Indigenous patients was longer. Indigenous patients were more likely to be discharged to a rural setting, less likely to be discharged home, and more likely to be unemployed following injury. Conclusions: Our results suggest that more resources need to be dedicated for transitioning Indigenous patients sustaining a TSCI to community living and for supporting these patients in their home communities. A focus on resources and infrastructure for Indigenous patients by engagement with Indigenous communities is needed.
Women experience major depression and post-traumatic stress disorder (PTSD) approximately twice as often as men. Estrogen is thought to contribute to sex differences in these disorders, and reduced estrogen is also known to be a key driver of menopause symptoms such as hot flashes. Moreover, estrogen is used to treat menopause symptoms. In order to test for potential shared genetic influences between menopause symptoms and psychiatric disorders, we conducted a genome-wide association study (GWAS) of estrogen medication use (as a proxy for menopause symptoms) in the UK Biobank.
Methods
The analysis included 232 993 women aged 39–71 in the UK Biobank. The outcome variable for genetic analyses was estrogen medication use, excluding women using hormonal contraceptives. Trans-ancestry GWAS meta-analyses were conducted along with genetic correlation analyses on the European ancestry GWAS results. Hormone usage was also tested for association with depression and PTSD.
Results
GWAS of estrogen medication use (compared to non-use) identified a locus in the TACR3 gene, which was previously linked to hot flashes in menopause [top rs77322567, odds ratio (OR) = 0.78, p = 7.7 × 10−15]. Genetic correlation analyses revealed shared genetic influences on menopause symptoms and depression (rg = 0.231, s.e.= 0.055, p = 2.8 × 10−5). Non-genetic analyses revealed higher psychiatric symptoms scores among women using estrogen medications.
Conclusions
These results suggest that menopause symptoms have a complex genetic etiology which is partially shared with genetic influences on depression. Moreover, the TACR3 gene identified here has direct clinical relevance; antagonists for the neurokinin 3 receptor (coded for by TACR3) are effective treatments for hot flashes.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.