We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Understanding the vertical coherence of the pressure structure and its interaction with velocity fields is critical for elucidating the mechanisms of acoustic generation and radiation in hypersonic turbulent boundary layers. This study employs linear coherence analysis to examine the self-similar coherent structures in the velocity and pressure fields within a Mach 6 hypersonic boundary layer, considering a range of wall-to-recovery temperature ratios. The influence of wall cooling on the geometric characteristics of these structures, such as inclination angles and three-dimensional aspect ratios, is evaluated. Specifically, the streamwise velocity exhibits self-similar coherent structures with the streamwise/wall-normal aspect ratio ranging from 16.5 to 38.7, showing a linear increases with decreasing wall temperatures. Similar linear dependence between the streamwise/wall-normal aspect ratio and the wall temperatures are observed for the Helmholtz-decomposed streamwise velocity and the pressure field. In terms of velocity–pressure coupling, the solenoidal component exhibits stronger interactions with the pressure fields in the near-wall region, while the dilatational component has stronger interactions with the pressure field at large scales with the increase of height. Such coupling generally follows the distance-from-the-wall scaling of the pressure field, except in cooled wall cases. Using the linear stochastic estimation, the pressure field across the boundary layer is predicted by inputting the near-wall pressure/velocity signal along with the transfer kernel. The result demonstrates that near-wall pressure signals provide the most accurate description of the pressure field in higher regions of the boundary layer. As wall-mounted sensors can measure near-wall pressure fluctuations, this study presents a potential approach to predict the off-wall pressure field correlated with the near-wall structures based on wall-pressure measurements.
Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.
Aims
Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.
Method
We examined average and modal controllability of the brain's functional connectome in 161 patients with schizophrenia, 37 unaffected siblings and 96 healthy controls during a two-back task. We use one-way analysis of variance to detect the regions with group differences, and correlated aberrant controllability to task performance and clinical characteristics. Regions affected in both unaffected siblings and patients were selected for gene and functional annotation analysis.
Results
Both average and modal controllability during the two-back task are reduced in patients compared to healthy controls and siblings, indicating a disruption in both proximal and distal state transitions. Among patients, reduced average controllability was prominent in auditory, visual and sensorimotor networks. Reduced modal controllability was prominent in default mode, frontoparietal and salience networks. Lower modal controllability in the affected networks correlated with worse task performance and higher antipsychotic dose in schizophrenia (uncorrected). Both siblings and patients had reduced average controllability in the paracentral lobule and Rolandic operculum. Subsequent out-of-sample gene analysis revealed that these two regions had preferential expression of genes relevant to bioenergetic pathways (calmodulin binding and insulin secretion).
Conclusions
Aberrant control of brain state transitions during task execution marks working memory deficits in patients and their siblings.
Nonlinear compression experiments based on multiple solid thin plates are conducted in an ultra-high peak power Ti:sapphire laser system. The incident laser pulse, with an energy of 80 mJ and a pulse width of 30.2 fs, is compressed to 10.1 fs by a thin-plate based nonlinear compression. Significant small-scale self-focusing is observed as ring structures appear in the near-field of the output pulse at high energy. Numerical simulations based on the experimental setup provide a good explanation for the observed phenomena, offering quantitative predictions of the spectrum, pulse width, dispersion and near- and far-field distributions of the compressed laser pulse.
A multifunctional optical diagnostic system, which includes an interferometer, a refractometer and a multi-frame shadowgraph, has been developed at the Shenguang-II upgrade laser facility to characterize underdense plasmas in experiments of the double-cone ignition scheme of inertial confinement fusion. The system employs a 266 nm laser as the probe to minimize the refraction effect and allows for flexible switching among three modes of the interferometer, refractometer and multi-frame shadowgraph. The multifunctional module comprises a pair of beam splitters that attenuate the laser, shield stray light and configure the multi-frame and interferometric modules. By adjusting the distance and angle between the beam splitters, the system can be easily adjusted and switched between the modes. Diagnostic results demonstrate that the interferometer can reconstruct electron density below 1019 cm–3, while the refractometer can diagnose density approximately up to 1020 cm–3. The multi-frame shadowgraph is used to qualitatively characterize the temporal evolution of plasmas in the cases in which the interferometer and refractometer become ineffective.
This study presents observations of coherent modes (CMs) in a spherical tokamak using a microwave interferometer near the midplane. The CMs within the 30–60 kHz frequency range were observed during electron cyclotron resonance heating only, and the frequency of the CMs increased proportionally with the square root of the electron temperature near $R = 0.7m$. Generally, these modes displayed bursting and chirping signatures with strong density rise and fall. Their appearance indicated an increase in the intensity of hard x rays, suggesting a deterioration in energetic electron confinement. Furthermore, the effect of CMs on the intensity of energetic electron-driven whistler waves was observed. They decreased when CMs were present and gradually increased with the decrease in CM intensity. The CMs may influence the intensity of whistler waves by affecting the energetic electron confinement.
Motivated by the recent work of Zhi-Wei Sun [‘Problems and results on determinants involving Legendre symbols’, Preprint, arXiv:2405.03626], we study some matrices concerning subgroups of finite fields. For example, let $q\equiv 3\pmod 4$ be an odd prime power and let $\phi $ be the unique quadratic multiplicative character of the finite field $\mathbb {F}_q$. If the set $\{s_1,\ldots ,s_{(q-1)/2}\}=\{x^2:\ x\in \mathbb {F}_q\setminus \{0\}\}$, then we prove that
The hydrodynamics of a self-propelling swimmer undergoing intermittent S-start swimming are investigated extensively with varying duty cycle $DC$, swimming period $T$, and tailbeat amplitude $A$. We find that the steady time-averaged swimming speed $\bar {U}_x$ increases directly with $A$, but varies inversely with $DC$ and $T$, where there is a maximal improvement of $541.29\,\%$ over continuous cruising swimming. Our results reveal two scaling laws, in the form of input versus output relations, that relate the swimmer's kinematics to its hydrodynamic performance: swimming speed and efficiency. A smaller $DC$ causes increased fluctuations in the swimmer's velocity generation. A larger $A$, on the other hand, allows the swimmer to reach steady swimming more quickly. Although we set out to determine scaling laws for intermittent S-start swimming, these scaling laws extend naturally to burst-and-coast and continuous modes of swimming. Additionally, we have identified, categorized and linked the wake structures produced by intermittent S-start swimmers with their velocity generation.
During the early stages of human pregnancy, successful implantation of embryonic trophoblast cells into the endometrium depends on good communication between trophoblast cells and the endometrium. Abnormal trophoblast cell function can cause embryo implantation failure. In this study, we added cyclosporine A (CsA) to the culture medium to observe the effect of CsA on embryonic trophoblast cells and the related mechanism. We observed that CsA promoted the migration and invasion of embryonic trophoblast cells. CsA promoted the expression of leukaemic inhibitory factor (LIF) and fibroblast growth factor (FGF). In addition, CsA promoted the secretion and volume increase in vesicles in the CsA-treated group compared with the control group. Therefore, CsA may promote the adhesion and invasion of trophoblast cells through LIF and FGF and promote the vesicle dynamic process, which is conducive to embryo implantation.
This study assesses the difference in professional attitudes among medical students, both before and after coronavirus disease 2019 (COVID-19), and identifies the determinants closely associated with it, while providing precise and scientific evidence for implementing precision education on such professional attitudes.
Methods:
A pre-post-like study was conducted among medical students in 31 provinces in mainland China, from March 23, to April 19, 2021.
Results:
The proportion of medical students whose professional attitudes were disturbed after the COVID-19 pandemic, was significantly lower than before the COVID-19 pandemic (χ2 = 15.6216; P < 0.0001). Compared with the “undisturbed -undisturbed” group, the “undisturbed-disturbed” group showed that there was a 1.664-fold risk of professional attitudes disturbed as grade increased, 3.269-fold risk when others suggested they choose a medical career rather than their own desire, and 7.557-fold risk for students with COVID-19 in their family, relatives, or friends; while the “disturbed-undisturbed” group showed that students with internship experience for professional attitudes strengthened was 2.933-fold than those without internship experience.
Conclusions:
The professional attitudes of medical students have been strengthened during the COVID-19 pandemic. The results provide evidence of the importance of education on professional attitudes among medical students during public health emergencies.
Magnetic fields are important physics in stellar evolutionary theory, which seriously affects the stellar structure and evolutionary statues. The small-scale magnetic fields in the photosphere are ubiquitous, and float on the stellar surface, which usually couple with the acoustic waves, affecting the propagation of the acoustic waves. Considering the effect of the magnetic fields in the stellar photosphere on the oscillation frequencies, we calculate the asteroseismology for solar-like star KIC 11295426 and KIC 10963065. We obtain the stellar fundamental parameters, especially the strength of small-scale magnetic fields in the stellar photosphere. We find that the small-scale magnetic fields in the stellar photosphere may obviously improve the agreement between the observations and the theoretical models for two stars. The magnetic strength for KIC 11295426 and KIC 10963065 from asteroseismology are in agreement with the stellar period-activity relation.
Bathymetry is an important factor affecting wave propagation in coastal environments but is often challenging to measure in practice. We propose a method for inferring coastal bathymetry from spatial variations in surface waves by combining a high-order spectral method for wave simulation and an adjoint-based variational data assimilation method. Recursion-formed adjoint equations are derived to obtain the sensitivity of the wave surface elevation to the underlying bottom topography to any desired order of nonlinear perturbation. We also develop a multiscale optimisation method to eliminate spurious high-wavenumber fluctuations in the reconstructed bathymetry data caused by sensitivity variations over the different length scales of surface waves. The proposed bottom detection method is validated with a realistic coastal wave environment involving complex two-dimensional bathymetry features, non-periodic incident waves and nonlinear broadband multidirectional waves. In numerical experiments at both laboratory and field scales, the bathymetry reconstructed from our method agrees well with the ground truth. We also show that our method is robust against imperfect surface wave data in the presence of limited sampling frequency and noise.
Parenting is a common and potent environmental factor influencing adolescent anxiety. Yet, the underlying neurobiological susceptibility signatures remain elusive. Here, we used a longitudinal twin neuroimaging study to investigate the brain network integration and its heritable relation to underpin the neural differential susceptibility of adolescent anxiety to parenting environments.
Methods
216 twins from the Beijing Twin Study completed the parenting and anxiety assessments and fMRI scanning. We first identified the brain network integration involved in the influences of parenting at age 12 on anxiety symptoms at age 15. We then estimated to what extent heritable sensitive factors are responsible for the susceptibility of brain network integration.
Results
Consistent with the differential susceptibility theory, the results showed that hypo-connectivity within the central executive network amplified the impact of maternal hostility on anxiety symptoms. A high anti-correlation between the anterior salience and default mode networks played a similar modulatory role in the susceptibility of adolescent anxiety to paternal hostility. Genetic influences (21.18%) were observed for the connectivity pattern in the central executive network.
Conclusions
Brain network integration served as a promising neurobiological signature of the differential susceptibility to adolescent anxiety. Our findings deepen the understanding of the neural sensitivity in the developing brain and can inform early identification and personalized interventions for adolescents at risk of anxiety disorders.
To analyse the comparative clinical outcomes and clinicopathological significance of vocal fold leukoplakia lesions treated by appearance classification and traditional methods.
Method
A total of 1442 vocal fold leukoplakia patients were enrolled. Group A patients were treated according to appearance classification and Group B patients were treated according to traditional methods.
Results
In Group A, 24.4, 14.9 and 60.6 per cent of patients had grade I, II and III dysplasia, respectively. Grade I dysplasia (63.4 per cent) was more than twice as frequent in Group B patients than in Group A patients, while grade II dysplasia (20.4 per cent) and grade III dysplasia (16.2 per cent) were significantly less frequent in Group B patients than in Group A patients (p = 0.000). There was a significant correlation between vocal fold leukoplakia appearance and the degree of dysplasia (p = 0.000). The recurrence and malignant transformation rates (17.6 and 31 per cent, respectively) in Group B were significantly greater than those in Group A (10.8 and 25.9 per cent, respectively) (p = 0.000).
Conclusion
Vocal fold leukoplakia appearance classification is useful for guiding treatment decision-making and could help to improve therapeutic accuracy.
Objectives: Methicillin-resistant Staphylococcus aureus (MRSA) is a major concern for hospitalized patients in Singapore. Hospital-onset (HO) MRSA bacteremia is monitored at the national level as an indicator of hospital quality. Patients who have colonized with methicillin-resistant Staphylococcus aureus (MRSA) are more likely to develop an MRSA infection in the future. A topical antiseptic solution or cloth called chlorhexidine gluconate (CHG) is effective against several gram-positive and gram-negative bacteria, including MRSA. Methods: The following control measures were present before and throughout the study period: (1) active screening of MRSA upon admission; (2) initiation of contact precaution once MRSA is detected; and (3) emphasis on strict hand hygiene. In January 2021, an intervention was for routine application of CHG bathing as follows: (1) training materials were developed; (2) train-the-trainer sessions were organized; (3) compliance regarding the application of CHG baths was monitored; and (4) the postimplementation process was reviewed. Results: There was no change of hand hygiene rate before and after implementation. In 2020, 17 cases of MRSA bacteremia occurred in the hospital, with an infection incidence of 0.54 per 10,000 patient days. In 2021, there were 10 cases of HO-MRSA bacteremia infection, with an overall rate of was 0.30 per 10,000 patient days. Conclusions: Daily bathing with chlorhexidine reduced the risk of MRSA acquisition and of hospital-acquired bacteremia.
Objectives: Carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CP-CRE) are nosocomial pathogens, and control of CP-CRE transmission is one of the most important infection control issues healthcare organizations face today. Increasing colonization acquisition and clinical infections of CP-CRE occurred in our institution in 2019. In this observational study, we monitored CP-CRE acquisition following implementation of multimodal control measures, and we describe the impact of this intervention on clinical infections. Methods: Increased hospital-acquired CP-CRE colonization and clinical infections were observed in early 2019. Increased CP-CRE surveillance was implemented to include CP-CRE contacts, patients with lengths of stay >7 days, patients with a recent history of hospitalization in other hospitals, and renal dialysis patients. The following interventions were also implemented: (1) isolation or placing CP-CRE patients in cohorts in a designated multidrug-resistant organism (MDRO) ward; (2) emphasis on hand hygiene and contact precautions; (3) mandatory use of gown and gloves for predefined ‘high-risk’ nursing activities, including diaper changing, toilet assistance, wound dressing, and handling urine or stool; (4) enhanced environmental and equipment cleaning; (5) regular audit and feedback regarding compliance; and (6) weekly feedback on ward-level CP-CRE acquisition. CP-CRE colonization cases and clinical infections were tracked by infection prevention and control nurses. Results: The hospital-acquired CP-CRE colonization rate was 4.39 per 10,000 patient days in 2019; it decreased slightly to 3.61 in 2020 and remained steady at 3.77 in 2021. The predominant CP-CRE genes were NDM, OXA-48–like, and KPC. There were 12 hospital-acquired CP-CRE infections in 2019, a rate of 0.37 per 10,000 patient days. This incidence decreased to 6 infections in 2020 and 3 infections in 2021, with corresponding infection rates of 0.19 and 0.09 per 10,000 patient days, respectively. Conclusions: Control of CP-CRE remains extremely challenging in hospitals with multibed open wards. A bundle approach to infection control showed a gradual reduction in CP-CRE cases, with a significant impact on the prevention of clinical infections.
Objectives: Control of Clostridioides difficile infections (CDIs) in healthcare facilities presents significant challenges to infectious disease physicians, infection prevention and control practitioners, and environmental services staff. CDI is a common cause of infectious diarrhea and is associated with significant morbidity, mortality, and healthcare cost. A high infection rate was documented in our institution in 2017, higher than the national infection rate. Strategies to reduce hospital-onset CDI were implemented after review of international guidelines and relevant literature. The impact on hospital-onset CDI was assessed. Methods: The following strategies were implemented beginning early in 2018: (1) contact precautions for patients with diarrhea; (2) early recognition and diagnosis of C. difficile infection; (3) prompt isolation of C. difficile patients; (4) emphasis on hand hygiene and contact precautions; (5) enhanced environmental cleaning with chlorine-based disinfectant and use of UV-C and ionized hydrogen peroxide for equipment disinfection; (6) enhanced cleaning and disinfection using sporicidal wipes for shared high-risk equipment; (7) audit and feedback regarding compliance with practices and environmental cleaning; and (8) collaboration with antibiotics stewardship program (ASP) to reduce inappropriate antibiotic use. Hospital-onset CDI cases were tracked by infection prevention and control nurses using definitions from the Singapore Ministry of Health. Results: In total, 135 hospital-onset C. difficile infection cases occurred in 2017, a rate of 4.2 per 10,000 patient days. This rate gradually decreased to 3.0 in 2018 and to 2.3 in 2020, with an average of 87 infections per year. This rate further decreased to 1.8 infections per 10,000 patient days in 2021, with 61 clinical infections. Conclusions: Using multimodal strategies, CGH achieved a gradual and steady reduction in hospital-onset CDI over several years. These strategies require close collaboration among various departments to achieve the desired outcome.
The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions. In this paper, we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations guided by the genetic algorithm and random forest algorithm. Compared to manual optimizations, the machine-learning guided method is able to efficiently improve the areal density by a factor of 63% and reduce the in-flight-aspect ratio by a factor of 30% at the same time. A relationship between the maximum areal density and ion temperature is also achieved by the analysis of the big simulation dataset. This design method has been successfully demonstrated by the 2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for the design of other inertial fusion experiments.