We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
Herbaceous perennials must annually rebuild the aboveground photosynthetic architecture from carbohydrates stored in crowns, rhizomes, and roots. Knowledge of carbohydrate utilization and storage can inform management decisions and improve control outcomes for invasive perennials. We monitored the nonstructural carbohydrates in a population of the hybrid Bohemian knotweed [Polygonum ×bohemicum (J. Chrtek & Chrtková) Zika & Jacobson [cuspidatum × sachalinense]; syn.: Fallopia ×bohemica (Chrtek and Chrtková) J.P. Bailey] and in Japanese knotweed [Polygonum cuspidatum Siebold & Zucc.; syn.: Fallopia japonica (Houtt.) Ronse Decr.]. Carbohydrate storage in crowns followed seasonal patterns typical of perennial herbaceous dicots corresponding to key phenological events. Starch was consistently the highest nonstructural carbohydrate present. Sucrose levels did not show a consistent inverse relationship with starch levels. Lateral distribution of starch in rhizomes and, more broadly, total nonstructural carbohydrates sampled before dormancy break showed higher levels in rhizomes compared with crowns. Total nonstructural carbohydrate levels in crowns reached seasonal lows at an estimated 22.6% of crown dry weight after accumulating 1,453.8 growing degree days (GDD) by the end of June, mainly due to depleted levels of stored starch, with the estimated minimum of 12.3% reached by 1,220.3 GDD accumulated by mid-June. Depletion corresponded to rapid development of vegetative canopy before entering the reproductive phase in August. Maximum starch accumulation in crowns followed complete senescence of aboveground tissues by mid- to late October. Removal of aboveground shoot biomass in late June to early July with removal of vegetation regrowth in early September before senescence would optimize the use of time and labor to deplete carbohydrate reserves. Additionally, foliar-applied systemic herbicide translocation to belowground tissue should be maximized with applications in late August through early fall to optimize downward translocation with assimilate movement to rebuild underground storage reserves. Fall applications should be made before loss of healthy leaf tissue, with the window for control typically ending by late September in Minnesota.
Cannabis use and familial vulnerability to psychosis have been associated with social cognition deficits. This study examined the potential relationship between cannabis use and cognitive biases underlying social cognition and functioning in patients with first episode psychosis (FEP), their siblings, and controls.
Methods
We analyzed a sample of 543 participants with FEP, 203 siblings, and 1168 controls from the EU-GEI study using a correlational design. We used logistic regression analyses to examine the influence of clinical group, lifetime cannabis use frequency, and potency of cannabis use on cognitive biases, accounting for demographic and cognitive variables.
Results
FEP patients showed increased odds of facial recognition processing (FRP) deficits (OR = 1.642, CI 1.123–2.402) relative to controls but not of speech illusions (SI) or jumping to conclusions (JTC) bias, with no statistically significant differences relative to siblings. Daily and occasional lifetime cannabis use were associated with decreased odds of SI (OR = 0.605, CI 0.368–0.997 and OR = 0.646, CI 0.457–0.913 respectively) and JTC bias (OR = 0.625, CI 0.422–0.925 and OR = 0.602, CI 0.460–0.787 respectively) compared with lifetime abstinence, but not with FRP deficits, in the whole sample. Within the cannabis user group, low-potency cannabis use was associated with increased odds of SI (OR = 1.829, CI 1.297–2.578, FRP deficits (OR = 1.393, CI 1.031–1.882, and JTC (OR = 1.661, CI 1.271–2.171) relative to high-potency cannabis use, with comparable effects in the three clinical groups.
Conclusions
Our findings suggest increased odds of cognitive biases in FEP patients who have never used cannabis and in low-potency users. Future studies should elucidate this association and its potential implications.
We examined whether cannabis use contributes to the increased risk of psychotic disorder for non-western minorities in Europe.
Methods
We used data from the EU-GEI study (collected at sites in Spain, Italy, France, the United Kingdom, and the Netherlands) on 825 first-episode patients and 1026 controls. We estimated the odds ratio (OR) of psychotic disorder for several groups of migrants compared with the local reference population, without and with adjustment for measures of cannabis use.
Results
The OR of psychotic disorder for non-western minorities, adjusted for age, sex, and recruitment area, was 1.80 (95% CI 1.39–2.33). Further adjustment of this OR for frequency of cannabis use had a minimal effect: OR = 1.81 (95% CI 1.38–2.37). The same applied to adjustment for frequency of use of high-potency cannabis. Likewise, adjustments of ORs for most sub-groups of non-western countries had a minimal effect. There were two exceptions. For the Black Caribbean group in London, after adjustment for frequency of use of high-potency cannabis the OR decreased from 2.45 (95% CI 1.25–4.79) to 1.61 (95% CI 0.74–3.51). Similarly, the OR for Surinamese and Dutch Antillean individuals in Amsterdam decreased after adjustment for daily use: from 2.57 (95% CI 1.07–6.15) to 1.67 (95% CI 0.62–4.53).
Conclusions
The contribution of cannabis use to the excess risk of psychotic disorder for non-western minorities was small. However, some evidence of an effect was found for people of Black Caribbean heritage in London and for those of Surinamese and Dutch Antillean heritage in Amsterdam.
This paper explores the feasibility of a break-even-class mirror referred to as BEAM (break-even axisymmetric mirror): a neutral-beam-heated simple mirror capable of thermonuclear-grade parameters and $Q\sim 1$ conditions. Compared with earlier mirror experiments in the 1980s, BEAM would have: higher-energy neutral beams, a larger and denser plasma at higher magnetic field, both an edge and a core and capabilities to address both magnetohydrodynamic and kinetic stability of the simple mirror in higher-temperature plasmas. Axisymmetry and high-field magnets make this possible at a modest scale enabling a short development time and lower capital cost. Such a $Q\sim 1$ configuration will be useful as a fusion technology development platform, in which tritium handling, materials and blankets can be tested in a real fusion environment, and as a base for development of higher-$Q$ mirrors.
Since the initial publication of A Compendium of Strategies to Prevent Healthcare-Associated Infections in Acute Care Hospitals in 2008, the prevention of healthcare-associated infections (HAIs) has continued to be a national priority. Progress in healthcare epidemiology, infection prevention, antimicrobial stewardship, and implementation science research has led to improvements in our understanding of effective strategies for HAI prevention. Despite these advances, HAIs continue to affect ∼1 of every 31 hospitalized patients,1 leading to substantial morbidity, mortality, and excess healthcare expenditures,1 and persistent gaps remain between what is recommended and what is practiced.
The widespread impact of the coronavirus disease 2019 (COVID-19) pandemic on HAI outcomes2 in acute-care hospitals has further highlighted the essential role of infection prevention programs and the critical importance of prioritizing efforts that can be sustained even in the face of resource requirements from COVID-19 and future infectious diseases crises.3
The Compendium: 2022 Updates document provides acute-care hospitals with up-to-date, practical expert guidance to assist in prioritizing and implementing HAI prevention efforts. It is the product of a highly collaborative effort led by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Disease Society of America (IDSA), the Association for Professionals in Infection Control and Epidemiology (APIC), the American Hospital Association (AHA), and The Joint Commission, with major contributions from representatives of organizations and societies with content expertise, including the Centers for Disease Control and Prevention (CDC), the Pediatric Infectious Disease Society (PIDS), the Society for Critical Care Medicine (SCCM), the Society for Hospital Medicine (SHM), the Surgical Infection Society (SIS), and others.
The Wisconsin high-temperature superconductor axisymmetric mirror experiment (WHAM) will be a high-field platform for prototyping technologies, validating interchange stabilization techniques and benchmarking numerical code performance, enabling the next step up to reactor parameters. A detailed overview of the experimental apparatus and its various subsystems is presented. WHAM will use electron cyclotron heating to ionize and build a dense target plasma for neutral beam injection of fast ions, stabilized by edge-biased sheared flow. At 25 keV injection energies, charge exchange dominates over impact ionization and limits the effectiveness of neutral beam injection fuelling. This paper outlines an iterative technique for self-consistently predicting the neutral beam driven anisotropic ion distribution and its role in the finite beta equilibrium. Beginning with recent work by Egedal et al. (Nucl. Fusion, vol. 62, no. 12, 2022, p. 126053) on the WHAM geometry, we detail how the FIDASIM code is used to model the charge exchange sources and sinks in the distribution function, and both are combined with an anisotropic magnetohydrodynamic equilibrium solver method to self-consistently reach an equilibrium. We compare this with recent results using the CQL3D code adapted for the mirror geometry, which includes the high-harmonic fast wave heating of fast ions.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
An interatrial communication is present in most neonates. The majority are considered the “normal” patency of the oval foramen, while a minority are abnormal atrial septal defects. Differentiation between the two with transthoracic echocardiography may be challenging, and no generally accepted method of classification is presently available. We aimed to develop and determine the reliability of a new classification of interatrial communications in newborns.
Methods and Results:
An algorithm was developed based on echocardiographic criteria from 495 newborns (median age 11[8;13] days, 51.5% females). The algorithm defines three main categories: patency of the oval foramen, atrial septal defect, and no interatrial communication as well as several subtypes. We found an interatrial communication in 414 (83.6%) newborns. Of these, 386 (93.2%) were categorised as patency of the oval foramen and 28 (6.8%) as atrial septal defects.
Echocardiograms from another 50 newborns (median age 11[8;13] days, 36.0% female), reviewed by eight experts in paediatric echocardiography, were used to assess the inter- and intraobserver variation of classification of interatrial communications into patency of the oval foramen and atrial septal defect, with and without the use of the algorithm. Review with the algorithm gave a substantial interobserver agreement (kappa = 0.66), and an almost perfect intraobserver agreement (kappa = 0.82). Without the use of the algorithm, the interobserver agreement between experienced paediatric cardiologists was low (kappa = 0.20).
Conclusion:
A new algorithm for echocardiographic classification of interatrial communications in newborns produced almost perfect intraobserver and substantial interobserver agreement. The algorithm may prove useful in both research and clinical practice.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60\,\mathrm{deg}^{2}$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of $z \lesssim 0.08$. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of $z \approx 0.014$ is relatively low compared to the full WALLABY survey. The median galaxy H i mass is $2.3 \times 10^{9}\,{\rm M}_{{\odot}}$. The target noise level of $1.6\,\mathrm{mJy}$ per 30′′ beam and $18.5\,\mathrm{kHz}$ channel translates into a $5 \sigma$ H i mass sensitivity for point sources of about $5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$ across 50 spectral channels (${\approx} 200\,\mathrm{km \, s}^{-1}$) and a $5 \sigma$ H i column density sensitivity of about $8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$ across 5 channels (${\approx} 20\,\mathrm{km \, s}^{-1}$) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
Gene x environment (G×E) interactions, i.e. genetic modulation of the sensitivity to environmental factors and/or environmental control of the gene expression, have not been reliably established regarding aetiology of psychotic disorders. Moreover, recent studies have shown associations between the polygenic risk scores for schizophrenia (PRS-SZ) and some risk factors of psychotic disorders, challenging the traditional gene v. environment dichotomy. In the present article, we studied the role of GxE interaction between psychosocial stressors (childhood trauma, stressful life-events, self-reported discrimination experiences and low social capital) and the PRS-SZ on subclinical psychosis in a population-based sample.
Methods
Data were drawn from the EUropean network of national schizophrenia networks studying Gene-Environment Interactions (EU-GEI) study, in which subjects without psychotic disorders were included in six countries. The sample was restricted to European descendant subjects (n = 706). Subclinical dimensions of psychosis (positive, negative, and depressive) were measured by the Community Assessment of Psychic Experiences (CAPE) scale. Associations between the PRS-SZ and the psychosocial stressors were tested. For each dimension, the interactions between genes and environment were assessed using linear models and comparing explained variances of ‘Genetic’ models (solely fitted with PRS-SZ), ‘Environmental’ models (solely fitted with each environmental stressor), ‘Independent’ models (with PRS-SZ and each environmental factor), and ‘Interaction’ models (Independent models plus an interaction term between the PRS-SZ and each environmental factor). Likelihood ration tests (LRT) compared the fit of the different models.
Results
There were no genes-environment associations. PRS-SZ was associated with positive dimensions (β = 0.092, R2 = 7.50%), and most psychosocial stressors were associated with all three subclinical psychotic dimensions (except social capital and positive dimension). Concerning the positive dimension, Independent models fitted better than Environmental and Genetic models. No significant GxE interaction was observed for any dimension.
Conclusions
This study in subjects without psychotic disorders suggests that (i) the aetiological continuum hypothesis could concern particularly the positive dimension of subclinical psychosis, (ii) genetic and environmental factors have independent effects on the level of this positive dimension, (iii) and that interactions between genetic and individual environmental factors could not be identified in this sample.
We describe a new low-frequency wideband radio survey of the southern sky. Observations covering 72–231 MHz and Declinations south of $+30^\circ$ have been performed with the Murchison Widefield Array “extended” Phase II configuration over 2018–2020 and will be processed to form data products including continuum and polarisation images and mosaics, multi-frequency catalogues, transient search data, and ionospheric measurements. From a pilot field described in this work, we publish an initial data release covering 1,447$\mathrm{deg}^2$ over $4\,\mathrm{h}\leq \mathrm{RA}\leq 13\,\mathrm{h}$, $-32.7^\circ \leq \mathrm{Dec} \leq -20.7^\circ$. We process twenty frequency bands sampling 72–231 MHz, with a resolution of 2′–45′′, and produce a wideband source-finding image across 170–231 MHz with a root mean square noise of $1.27\pm0.15\,\mathrm{mJy\,beam}^{-1}$. Source-finding yields 78,967 components, of which 71,320 are fitted spectrally. The catalogue has a completeness of 98% at ${{\sim}}50\,\mathrm{mJy}$, and a reliability of 98.2% at $5\sigma$ rising to 99.7% at $7\sigma$. A catalogue is available from Vizier; images are made available via the PASA datastore, AAO Data Central, and SkyView. This is the first in a series of data releases from the GLEAM-X survey.
Bloodstream infections (BSIs) are a frequent cause of morbidity in patients with acute myeloid leukemia (AML), due in part to the presence of central venous access devices (CVADs) required to deliver therapy.
Objective:
To determine the differential risk of bacterial BSI during neutropenia by CVAD type in pediatric patients with AML.
Methods:
We performed a secondary analysis in a cohort of 560 pediatric patients (1,828 chemotherapy courses) receiving frontline AML chemotherapy at 17 US centers. The exposure was CVAD type at course start: tunneled externalized catheter (TEC), peripherally inserted central catheter (PICC), or totally implanted catheter (TIC). The primary outcome was course-specific incident bacterial BSI; secondary outcomes included mucosal barrier injury (MBI)-BSI and non-MBI BSI. Poisson regression was used to compute adjusted rate ratios comparing BSI occurrence during neutropenia by line type, controlling for demographic, clinical, and hospital-level characteristics.
Results:
The rate of BSI did not differ by CVAD type: 11 BSIs per 1,000 neutropenic days for TECs, 13.7 for PICCs, and 10.7 for TICs. After adjustment, there was no statistically significant association between CVAD type and BSI: PICC incident rate ratio [IRR] = 1.00 (95% confidence interval [CI], 0.75–1.32) and TIC IRR = 0.83 (95% CI, 0.49–1.41) compared to TEC. When MBI and non-MBI were examined separately, results were similar.
Conclusions:
In this large, multicenter cohort of pediatric AML patients, we found no difference in the rate of BSI during neutropenia by CVAD type. This may be due to a risk-profile for BSI that is unique to AML patients.
We have developed the bispectral electroencephalography (BSEEG) method for detection of delirium and prediction of poor outcomes.
Aims
To improve the BSEEG method by introducing a new EEG device.
Method
In a prospective cohort study, EEG data were obtained and BSEEG scores were calculated. BSEEG scores were filtered on the basis of standard deviation (s.d.) values to exclude signals with high noise. Both non-filtered and s.d.-filtered BSEEG scores were analysed. BSEEG scores were compared with the results of three delirium screening scales: the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU), the Delirium Rating Scale-Revised-98 (DRS) and the Delirium Observation Screening Scale (DOSS). Additionally, the 365-day mortalities and the length of stay (LOS) in the hospital were analysed.
Results
We enrolled 279 elderly participants and obtained 620 BSEEG recordings; 142 participants were categorised as BSEEG-positive, reflecting slower EEG activity. BSEEG scores were higher in the CAM-ICU-positive group than in the CAM-ICU-negative group. There were significant correlations between BSEEG scores and scores on the DRS and the DOSS. The mortality rate of the BSEEG-positive group was significantly higher than that of the BSEEG-negative group. The LOS of the BSEEG-positive group was longer compared with that of the BSEEG-negative group. BSEEG scores after s.d. filtering showed stronger correlations with delirium screening scores and more significant prediction of mortality.
Conclusions
We confirmed the usefulness of the BSEEG method for detection of delirium and of delirium severity, and prediction of patient outcomes with a new EEG device.
In this paper, we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers $31\,\textrm{deg}^{2}$ at $800\,\textrm{MHz}$. As a two-dimensional array of 36$\times$12 m antennas, with baselines ranging from 22 m to 6 km, ASKAP also has excellent snapshot imaging capability and 10 arcsec resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 and $1800\,\textrm{MHz}$ and is expected to facilitate great advances in our understanding of galaxy formation, cosmology, and radio transients while opening new parameter space for discovery of the unknown.
The fibrous scaffolds for bone tissue engineering that mimic the extracellular matrix with bioactive and bactericidal properties could provide adequate conditions for regeneration of damaged bone. Electrospun ultrathin fiber covered with nano-hydroxyapatite is a favorable fibrous scaffold design. We developed a fast and reproducible strategy to produce polyvinylidene fluoride (PVDF)/nano-hydroxyapatite (nHAp) nanofibrous scaffolds with bactericidal and bioactive properties. Fibrous PVDF scaffolds were obtained first by the electrospinning method. Then, their surfaces were modified using oxygen plasma treatment followed by electrodeposition of nHAp. This process formed nanofibrous and superhydrophilic PVDF fibers (133.6 nm, fiber average diameter) covered with homogeneous nHAp (202.6 nm, average particle diameter) crystals. Energy-dispersive X-ray spectrometry demonstrated the presence of calcium phosphate, indicating a Ca/P molar ratio of approximately 1.64. X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy spectra identified β-phase of nHAp. Thermal analysis indicated a slight reduction in stability after nHAp electrodeposition. Bactericidal assays showed that nHAp exhibited 99.8% efficiency against Pseudomonas aeruginosa bacteria. The PVDF/Plasma and PVDF/nHAp groups had the highest cell viability, total protein, and alkaline phosphatase activity by 7 days after exposure of the scaffolds to MG63 cell culture. Therefore, the developed scaffolds are an exciting alternative for application in bone regeneration.
This study presents two years of characterization of a warm temperate rhodolith bed in order to analyse how certain environmental changes influence the community ecology. The biomass of rhodoliths and associated species were analysed during this period and in situ experiments were conducted to evaluate the primary production, calcification and respiration of the dominant species of rhodoliths and epiphytes. The highest total biomass of rhodoliths occurred during austral winter. Lithothamnion crispatum was the most abundant rhodolith species in austral summer. Epiphytic macroalgae occurred only in January 2015, with Padina gymnospora being the most abundant. Considering associated fauna, the biomass of Mollusca increased from February 2015 to February 2016. Population densities of key reef fish species inside and around the rhodolith beds showed significant variations in time. The densities of grouper (carnivores/piscivores) increased in time, especially from 2015 to 2016. On the other hand, grunts (macroinvertebrate feeders) had a modest decrease over time (from 2014 to 2016). Other parameters such as primary production and calcification of L. crispatum were higher under enhanced irradiance, yet decreased in the presence of P. gymnospora. Community structure and physiological responses can be explained by the interaction of abiotic and biotic factors, which are driven by environmental changes over time. Biomass changes can indicate that herbivores play a role in limiting the growth of epiphytes, and this is beneficial to the rhodoliths because it decreases competition for environmental resources with fleshy algae.
The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories.