We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
Objectives/Goals: Chronic stress may accelerate biological aging yet is often overlooked in clinical settings. Many tools to assess stress exist, but a comprehensive measure of cumulative stress across the lifespan is unavailable. This study validates a novel measure of lifetime stress for use as a screening tool in clinical practice. Methods/Study Population: Patients (n > 220) enrolled in brain health research registry at the Washington University St. Louis Knight Alzheimer Disease Research Center completed in-person surveys at baseline and after six months. Baseline measures included the everyday discrimination scale (EDS), total adverse experience (TAE), and demographics. Age and evaluating life course stress experience (ELSE) scores were measured six months later. Ongoing analysis includes age-adjusted correlations of ELSE scores with TAE and EDS scores. We will investigate the correlation with race and ethnicity and sex assigned at birth. We will explore the relationship between ELSE score and multidimensional intersectionality. Results/Anticipated Results: The sample was 87% Black or African American, 8% White, 4% Hispanic, 82% female, and 18% male, with a mean age of 66 ± 10 years. Age-adjusted relationships between patient characteristics and ELSE scores will be analyzed. Additionally, ELSE responses will be compared against age, EDS, and TAE measurements. Intersectionality between race-ethnicity, sex, and gender will be examined. We hypothesize ELSE scores will vary by demographic. Preliminary results indicate the ELSE scale correlates with established life stress measures, accounting for cumulative stress exposure across a lifespan independent of specific stressor topics. Discussion/Significance of Impact: The ELSE scale is a viable tool for clinical screening of chronic stress exposure over a lifespan. Its implementation will allow clinicians to identify patients at high risk for accelerated aging, facilitating targeted interventions and advancing equity in healthcare delivery.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
Medical researchers are increasingly prioritizing the inclusion of underserved communities in clinical studies. However, mere inclusion is not enough. People from underserved communities frequently experience chronic stress that may lead to accelerated biological aging and early morbidity and mortality. It is our hope and intent that the medical community come together to engineer improved health outcomes for vulnerable populations. Here, we introduce Health Equity Engineering (HEE), a comprehensive scientific framework to guide research on the development of tools to identify individuals at risk of poor health outcomes due to chronic stress, the integration of these tools within existing healthcare system infrastructures, and a robust assessment of their effectiveness and sustainability. HEE is anchored in the premise that strategic intervention at the individual level, tailored to the needs of the most at-risk people, can pave the way for achieving equitable health standards at a broader population level. HEE provides a scientific framework guiding health equity research to equip the medical community with a robust set of tools to enhance health equity for current and future generations.
This constructivist grounded theory study aimed to (1) explore patients’ experiences of and roles in interprofessional collaborative practice for chronic conditions in primary care and (2) consider the relevance and alignment of an existing theoretical framework on patients’ roles and based on the experiences of patient advocates.
Background:
High-quality management of chronic conditions requires an interprofessional collaborative practice model of care considering an individual’s mental, physical, and social health situation. Patients’ experiences of this model in the primary care setting are relatively unknown.
Methods:
A constructivist grounded theory approach was taken. Interview data were collected from primary care patients with chronic conditions across Australia in August 2020 – February 2022. Interviews were recorded, transcribed verbatim, and thematically analysed by (1) initial line-by-line coding, (2) focused coding, (3) memo writing, (4) categorisation, and (5) theme and sub-theme development. Themes and sub-themes were mapped against an existing theoretical framework to expand and confirm the results from a previous study with a similar research aim.
Findings:
Twenty adults with chronic conditions spanning physical disability, diabetes, heart disease, cancer, autoimmune, and mental health conditions participated. Two themes were developed: (1) Adapting to Change with two sub-themes describing how patients adapt to interprofessional team care and (2) Shifting across the spectrum of roles, with five sub-themes outlining the roles patients enact while receiving care. The findings suggest that patients’ roles are highly variable and fluid in interprofessional collaborative practice, and further work is recommended to develop a resource to support greater patient engagement in interprofessional collaborative practice.
We present WALLABY pilot data release 1, the first public release of H i pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60\,\mathrm{deg}^{2}$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of $z \lesssim 0.08$. The source catalogue, images and spectra of nearly 600 extragalactic H i detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of $z \approx 0.014$ is relatively low compared to the full WALLABY survey. The median galaxy H i mass is $2.3 \times 10^{9}\,{\rm M}_{{\odot}}$. The target noise level of $1.6\,\mathrm{mJy}$ per 30′′ beam and $18.5\,\mathrm{kHz}$ channel translates into a $5 \sigma$ H i mass sensitivity for point sources of about $5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100\,Mpc})^{2} \, {\rm M}_{{\odot}}$ across 50 spectral channels (${\approx} 200\,\mathrm{km \, s}^{-1}$) and a $5 \sigma$ H i column density sensitivity of about $8.6 \times 10^{19} \, (1 + z)^{4}\,\mathrm{cm}^{-2}$ across 5 channels (${\approx} 20\,\mathrm{km \, s}^{-1}$) for emission filling the 30′′ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey.
The Covid-19 pandemic has significantly changed family dynamics and parents experience greater psychological distress. Conduct problems in young people have increased by 35%. However, it is not known how Covid-19 associated stresses have affected parenting practice, conduct problems, and comorbidities and what additional support is needed for families at risk.
Objectives
This study uses self-report measures and semi-structured interviews to examine and explore the impact of Covid-19 on the families of young people with conduct problems and comorbid mental health conditions.
Methods
This is a sequential mixed-methods study. Eligible families with children aged between 11-18 years have participated. One-hundred-and-eighty-two families have completed eight online questionnaires and 12 have participated in semi-structured follow-up interviews.
Results
Analyses indicate that parental harshness, warmth, educational background, and employment have a significant impact on Covid-19 exposure and worries, as well as significantly higher scores of conduct disorder symptoms. Interview codes reveal that young peoples’ behaviour became more severe during the pandemic, and this was associated with reduced in-person support services, reduced personal space at home, and parents taking on the additional role of educator.
Conclusions
The findings suggest that Covid-19 is a significant risk factor to young people with conduct problems and their families. For example, reduced parental warmth and increased parental harshness increased conduct problems for young people during the lockdown. This study highlights that policies and services should work to better support such families. Future online psychosocial interventions are needed to empower families and improve parenting practice at home during the lockdown period and in general.
We present the most sensitive and detailed view of the neutral hydrogen (${\rm H\small I}$) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal ${\rm H\small I}$ in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K ($1.6\,\mathrm{mJy\ beam}^{-1}$) $\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$ spectral channel with an angular resolution of $30^{\prime\prime}$ (${\sim}10\,\mathrm{pc}$). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire ${\sim}25\,\mathrm{deg}^2$ field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes ${\rm H\small I}$ test observations.
Paramedics are a vital component of the Emergency Medical Services (EMS) workforce and the United States health care system. The continued provision of high-quality care demands constantly improving education at accredited institutions. To date, only limited characteristics of paramedic education in the United States have been documented and studied in the literature. The objective of this study was to describe the educational infrastructure of accredited paramedic programs in the United States in 2018.
Methods:
This is a retrospective, cross-sectional evaluation of the 2018 paramedic program annual report from The Committee on Accreditation of Educational Programs for the EMS Professions (CoAEMSP; Rowlett, Texas USA). The dataset includes detailed program metrics. Additionally, questions concerning program characteristics, demographics, and resources were asked as part of the evaluation. Resource availability was assessed via the Resource Assessment Matrix (RAM) with a benchmark of 80%. Included in the analysis are all paramedic programs with students enrolled. Descriptive statistics were calculated (median, [interquartile range/IQR]).
Results:
A total of 677 programs submitted data (100% response rate). Of these, 626 met inclusion criteria, totaling 17,422 students. Program annual enrollment varied greatly from one to 362 with most programs having small sizes (18 students [IQR 12-30]). Program duration was 12 months [IQR 12-16] with total hours of instruction being approximately 1,174 [IQR 1069-1304], 19% of which were dedicated to clinical experience. Full-time faculty sizes were small (two faculty members [IQR 1-3]) with most programs (80%) having annual operating budgets below USD$500,000. For programs with an annual budget below USD$100,000 (34% of programs), annual enrollment was approximately 14 students [IQR 9-21]. Degrees conferred by programs included certificates (90%), associate degrees (55%), and bachelor’s degree (2%). Simulation access was assessed with nearly all (100%) programs reporting simple task trainers and 84% of programs investing in advanced simulation manikins. Seventy-eight percent of programs met the RAM benchmark.
Conclusion:
Most paramedic educational programs in the United States have small annual enrollments with low numbers of dedicated faculty and confer certificates and associate degrees. Nearly one-quarter of paramedic educational programs are not adequately resourced. This study is limited by self-reported data to the national accreditation agency. Future work is needed to identify program characteristics that are associated with high performance.
Background: Ventriculoperitoneal (VP) shunt failures in adult patients are common and subject patients to multiple surgeries and a decreased quality of life. A prospective cohort Shunt Outcomes Quality Improvement (ShOut-QI) initiative was implemented to reduce shunt failure incidence through neuronavigation-assisted proximal catheter insertion and laparoscopy-guided distal catheter anchoring over the liver dome to drain CSF away from the omentum. Methods: “Pre-ShOut” and “Post-ShOut” groups of patients included those with and without neuronavigation/laparoscopy, respectively for insertion of a new VP shunt. The primary outcome was shunt failure which was defined as any return to surgery for shunt revision as determined with a standardized clinical and radiology follow-up protocol. Results: 244 patients (97 Pre-ShOut, 147 Post-ShOut), mean age 73 years, were enrolled over a 7-year interval and observed for a mean duration of 4 years after shunt insertion. Neuronavigation improved proximal catheter placement accuracy by 20% (p<.001), and shunt failure occurred in 57% vs 23% in the Pre-ShOut and Post-ShOut groups, respectively (p=.008), representing a 53% relative risk reduction in the incidence of shunt failure. Conclusions: Adult shunt failure incidence may be significantly reduced by improving the accuracy of proximal catheter placement with neuronavigation and reducing the risk of distal catheter failure with laparoscopic-guided placement.
The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 s to $\sim\!5$ yr. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim\!162$ h of observations conducted at a central frequency of 888 MHz between 2019 August and 2020 August, with a typical rms sensitivity of $0.24\ \mathrm{mJy\ beam}^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, each of which was observed for 12 min integration time, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5 131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1 646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039–5617. Another seven are stars, four of which have no previously reported radio detection (SCR J0533–4257, LEHPM 2-783, UCAC3 89–412162 and 2MASS J22414436–6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multi-wavelength counterparts and are yet to be identified.
The derivation and numerical implementation of a linearized version of the gyrokinetic (GK) Coulomb collision operator (Jorge et al., J. Plasma Phys., vol. 85, 2019, 905850604) and of the widely used linearized GK Sugama collision operator (Sugama et al., Phys. Plasmas, vol. 16, 2009, 112503) is reported. An approach based on a Hermite–Laguerre moment expansion of the perturbed gyrocentre distribution function is used, referred to as gyromoment expansion. This approach allows the considering of arbitrary perpendicular wavenumber and expressing the two linearized GK operators as a linear combination of gyromoments where the expansion coefficients are given by closed analytical expressions that depend on the perpendicular wavenumber and on the temperature and mass ratios of the colliding species. The drift-kinetic (DK) limits of the GK linearized Coulomb and Sugama operators are also obtained. Comparisons between the gyromoment approach and the DK Coulomb and GK Sugama operators in the continuum GK code GENE are reported, focusing on the ion-temperature-gradient instability and zonal flow damping, finding an excellent agreement. It is confirmed that stronger collisional damping of the zonal flow residual by the Sugama GK model compared with the GK linearized Coulomb (Pan et al., Phys. Plasmas, vol. 27, 2020, 042307) persists at higher collisionality. Finally, we show that the numerical efficiency of the gyromoment approach increases with collisionality, a desired property for boundary plasma applications.
We present the data and initial results from the first pilot survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers $270 \,\mathrm{deg}^2$ of an area covered by the Dark Energy Survey, reaching a depth of 25–30 $\mu\mathrm{Jy\ beam}^{-1}$ rms at a spatial resolution of $\sim$11–18 arcsec, resulting in a catalogue of $\sim$220 000 sources, of which $\sim$180 000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here.
The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700–1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim$ 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288-MHz band centred at 887.5 MHz.
Mood instability is an important problem but has received relatively little research attention. Natural language processing (NLP) is a novel method, which can used to automatically extract clinical data from electronic health records (EHRs).
Aims
To extract mood instability data from EHRs and investigate its impact on people with mental health disorders.
Methods
Data on mood instability were extracted using NLP from 27,704 adults receiving care from the South London and Maudsley NHS Foundation Trust (SLaM) for affective, personality or psychotic disorders. These data were used to investigate the association of mood instability with different mental disorders and with hospitalisation and treatment outcomes.
Results
Mood instability was documented in 12.1% of people included in the study. It was most frequently documented in people with bipolar disorder (22.6%), but was also common in personality disorder (17.8%) and schizophrenia (15.5%). It was associated with a greater number of days spent in hospital (B coefficient 18.5, 95% CI 12.1–24.8), greater frequency of hospitalisation (incidence rate ratio 1.95, 1.75–2.17), and an increased likelihood of prescription of antipsychotics (2.03, 1.75–2.35).
Conclusions
Using NLP, it was possible to identify mood instability in a large number of people, which would otherwise not have been possible by manually reading clinical records. Mood instability occurs in a wide range of mental disorders. It is generally associated with poor clinical outcomes. These findings suggest that clinicians should screen for mood instability across all common mental health disorders. The data also highlight the utility of NLP for clinical research.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
Public health monitoring is commonly undertaken in social media but has never been combined with data analysis from electronic health records. This study aimed to investigate the relationship between the emergence of novel psychoactive substances (NPS) in social media and their appearance in a large mental health database.
Methods
Insufficient numbers of mentions of other NPS in case records meant that the study focused on mephedrone. Data were extracted on the number of mephedrone (i) references in the clinical record at the South London and Maudsley NHS Trust, London, UK, (ii) mentions in Twitter, (iii) related searches in Google and (iv) visits in Wikipedia. The characteristics of current mephedrone users in the clinical record were also established.
Results
Increased activity related to mephedrone searches in Google and visits in Wikipedia preceded a peak in mephedrone-related references in the clinical record followed by a spike in the other 3 data sources in early 2010, when mephedrone was assigned a ‘class B’ status. Features of current mephedrone users widely matched those from community studies.
Conclusions
Combined analysis of information from social media and data from mental health records may assist public health and clinical surveillance for certain substance-related events of interest. There exists potential for early warning systems for health-care practitioners.