We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work, we present a methodology and a corresponding code-base for constructing mock integral field spectrograph (IFS) observations of simulated galaxies in a consistent and reproducible way. Such methods are necessary to improve the collaboration and comparison of observation and theory results, and accelerate our understanding of how the kinematics of galaxies evolve over time. This code, SimSpin, is an open-source package written in R, but also with an API interface such that the code can be interacted with in any coding language. Documentation and individual examples can be found at the open-source website connected to the online repository. SimSpin is already being utilised by international IFS collaborations, including SAMI and MAGPI, for generating comparable data sets from a diverse suite of cosmological hydrodynamical simulations.
We present an overview of the Middle Ages Galaxy Properties with Integral Field Spectroscopy (MAGPI) survey, a Large Program on the European Southern Observatory Very Large Telescope. MAGPI is designed to study the physical drivers of galaxy transformation at a lookback time of 3–4 Gyr, during which the dynamical, morphological, and chemical properties of galaxies are predicted to evolve significantly. The survey uses new medium-deep adaptive optics aided Multi-Unit Spectroscopic Explorer (MUSE) observations of fields selected from the Galaxy and Mass Assembly (GAMA) survey, providing a wealth of publicly available ancillary multi-wavelength data. With these data, MAGPI will map the kinematic and chemical properties of stars and ionised gas for a sample of 60 massive (${>}7 \times 10^{10} {\mathrm{M}}_\odot$) central galaxies at $0.25 < z <0.35$ in a representative range of environments (isolated, groups and clusters). The spatial resolution delivered by MUSE with Ground Layer Adaptive Optics ($0.6-0.8$ arcsec FWHM) will facilitate a direct comparison with Integral Field Spectroscopy surveys of the nearby Universe, such as SAMI and MaNGA, and at higher redshifts using adaptive optics, for example, SINS. In addition to the primary (central) galaxy sample, MAGPI will deliver resolved and unresolved spectra for as many as 150 satellite galaxies at $0.25 < z <0.35$, as well as hundreds of emission-line sources at $z < 6$. This paper outlines the science goals, survey design, and observing strategy of MAGPI. We also present a first look at the MAGPI data, and the theoretical framework to which MAGPI data will be compared using the current generation of cosmological hydrodynamical simulations including EAGLE, Magneticum, HORIZON-AGN, and Illustris-TNG. Our results show that cosmological hydrodynamical simulations make discrepant predictions in the spatially resolved properties of galaxies at $z\approx 0.3$. MAGPI observations will place new constraints and allow for tangible improvements in galaxy formation theory.
The objectives of this study were to develop and refine EMPOWER (Enhancing and Mobilizing the POtential for Wellness and Resilience), a brief manualized cognitive-behavioral, acceptance-based intervention for surrogate decision-makers of critically ill patients and to evaluate its preliminary feasibility, acceptability, and promise in improving surrogates’ mental health and patient outcomes.
Method
Part 1 involved obtaining qualitative stakeholder feedback from 5 bereaved surrogates and 10 critical care and mental health clinicians. Stakeholders were provided with the manual and prompted for feedback on its content, format, and language. Feedback was organized and incorporated into the manual, which was then re-circulated until consensus. In Part 2, surrogates of critically ill patients admitted to an intensive care unit (ICU) reporting moderate anxiety or close attachment were enrolled in an open trial of EMPOWER. Surrogates completed six, 15–20 min modules, totaling 1.5–2 h. Surrogates were administered measures of peritraumatic distress, experiential avoidance, prolonged grief, distress tolerance, anxiety, and depression at pre-intervention, post-intervention, and at 1-month and 3-month follow-up assessments.
Results
Part 1 resulted in changes to the EMPOWER manual, including reducing jargon, improving navigability, making EMPOWER applicable for a range of illness scenarios, rearranging the modules, and adding further instructions and psychoeducation. Part 2 findings suggested that EMPOWER is feasible, with 100% of participants completing all modules. The acceptability of EMPOWER appeared strong, with high ratings of effectiveness and helpfulness (M = 8/10). Results showed immediate post-intervention improvements in anxiety (d = −0.41), peritraumatic distress (d = −0.24), and experiential avoidance (d = −0.23). At the 3-month follow-up assessments, surrogates exhibited improvements in prolonged grief symptoms (d = −0.94), depression (d = −0.23), anxiety (d = −0.29), and experiential avoidance (d = −0.30).
Significance of results
Preliminary data suggest that EMPOWER is feasible, acceptable, and associated with notable improvements in psychological symptoms among surrogates. Future research should examine EMPOWER with a larger sample in a randomized controlled trial.
Mindfulness-based cognitive therapy (MBCT) is a psychotherapeutic intervention that has been shown effective in several clinical conditions. Nevertheless, research is still needed on its effectiveness on cognition.
Objective
To analyze possible effects on cognition of the addition of MBCT intervention versus a brief structured group psycho-education to the standard treatment of subsyndromal bipolar depression. Our hypothesis was that MBCT could improve some aspects of cognitive function to a higher degree than psycho-education and treatment as usual (TAU).
Methods/design
A randomized, multicenter, prospective, versus active comparator, evaluator-blinded clinical trial was conducted. Forty patients with BD and subclinical or mild depressive symptoms were randomly allocated to:
– MBCT added to psychopharmacological treatment (n = 16);
– a brief structured group psycho-educational intervention added to psychopharmacological treatment (n = 17);
– standard clinical management, including psychopharmacological treatment (n = 7).
Assessments were conducted at screening, baseline, post-intervention (8 weeks) and 4-month follow-up.
Results
Cognition results point to significant improvement in Stroop Color test as well as processing speed in TMT A test (P < 0.05) in the two psychological intervention groups versus TAU.
Conclusion
These preliminary findings suggest that the addition of MBCT or psycho-education to usual treatment could improve some cognitive dimensions in subsyndromal bipolar depressive patients.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
Within the Alston Orefield of the North Pennines, glaucodot and gersdorffite have been found in samples from Tynebottom Mine, Garrigill, and zoned gersdorffite has been found from Nenthead and the Great Sulphur Vein. At Scar Crag in the English Lake District, glaucodot and alloclase (the first reported occurrence in the United Kingdom) occur associated with arsenopyrite and minor cobaltite and skutterudite. The mineralogy and parageneses of these associations have been studied by ore microscopy, X-ray powder photography, and electron probe microanalysis.
Electron probe microanalysis shows a considerable range in nickel content in the sulpharsenides from the Alston Orefield with a relatively constant Co:Fe ratio. Samples from Scar Crag contain no nickel but exhibit almost a complete range of Co:Fe ratios from FeAsS to CoAsS. The compositions of the Alston Orefield sulpharsenides, in particular, show them to be metastable phases when compared with data from synthetic studies. At Tynebottom Mine, glaucodot and gersdorffite overgrow arsenical marcasite, and at Nenthead and the Great Sulphur Vein, early pyrite framboids or euhedra act as cores to zoned gersdorffite crystals. The Scar Crag sulpharsenides occur in a quartz chlorite apatite vein with the glaucodot and alloclase as overgrowths on arsenopyrite.
In the case of the Scar Crag association, consideration of the compositions of coexisting phases, together with precise determinations of the arsenic content of the arsenopyrites, has permitted speculation regarding temperatures and sulphur activities during ore formation. Estimated ranges are Tc. 400 °C–300 °C and aS2 ≈ 10−9–10−11 11 bar. The occurrence of the sulpharsenides in the Alston Orefield correlates with further geochemical differences compared to other Pennine ores, differences that have been linked to higher temperatures of formation and a magmatic contribution to the ore-forming fluid. The Scar Crag mineralization may be related to a postulated stock intrusion beneath Causey Pike and the geographical proximity of the Alston and Scar Crag occurrences does suggest the possibility of a genetic link.
EXAFS and Mössbauer data on synthetic silver-rich tetrahedrite, (Cu, Ag)10+xFe2−xSb4S13, reveal the presence of Fe2+ and Fe3+ the former occupying trigonal planar sites and the latter tetrahedral sites. There is also a clear relationship between increased silver substitution and an increase in Fe2+. The amount of Fe3+ incorporated in the synthetic tetrahedrites is proportional to the excess of Cu+ (Cu + Ag > 10 atoms) in the mineral, thus maintaining a charge balance. The iron in the natural tetrahedrites and the tennantite examined is mainly tetrahedrally co-ordinated Fe2+.
Introduction: Understanding factors associated with increased use of nicotine replacement therapy (NRT) is critical to implementing cessation interventions for low-income individuals yet the factors associated with NRT use among low-income smokers are poorly understood.
Aims: Assess factors associated with NRT use among low-income public housing residents.
Methods: ‘Kick it for Good’ was a randomised smoking cessation intervention study conducted among residents of public housing sites in Boston, MA. Secondary, cross-sectional analyses were conducted on smokers from a community-based intervention cessation intervention who reported making a quit attempt and use of NRT in the past 12 months (n = 234).
Results: Among smokers who made a quit attempt in the past year, 29% reported using NRT. Black (prevalence ratio, PR = 0.52, 95% CI: 0.38–0.71) and Hispanic (PR = 0.52, 95% CI: 0.31–0.88) participants were less likely to report use of NRT compared with Whites. The prevalence of recent NRT use was greatest among those both asking for and receiving provider advice (PR = 1.90, 95% CI: 0.96–3.78).
Conclusions: Minority race and ethnicity and low provider engagement on NRT use were associated with lower NRT use. Providing barrier-free access to NRT and facilitating provider engagement with smokers regarding NRT use can increase NRT use among low-income populations.
Polymer:fullerene nanoparticles (NPs) offer two key advantages over bulk heterojunction (BHJ) films for organic photovoltaics (OPVs), water-processability and potentially superior morphological control. Once an optimal active layer morphology is reached, maintaining this morphology at OPV operating temperatures is key to the lifetime of a device. Here we study the morphology of the PDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene}):PC71BM ([6,6]-phenyl C71 butyric acid methyl ester) NP system and then compare the thermal stability of NP and BHJ films to the common poly(3-hexylthiophene) (P3HT): phenyl C61 butyric acid methyl ester (PC61BM) system. We find that material Tg plays a key role in the superior thermal stability of the PDPP-TNT:PC71BM system; whereas for the P3HT:PC61BM system, domain structure is critical.
The Antarctic Roadmap Challenges (ARC) project identified critical requirements to deliver high priority Antarctic research in the 21st century. The ARC project addressed the challenges of enabling technologies, facilitating access, providing logistics and infrastructure, and capitalizing on international co-operation. Technological requirements include: i) innovative automated in situ observing systems, sensors and interoperable platforms (including power demands), ii) realistic and holistic numerical models, iii) enhanced remote sensing and sensors, iv) expanded sample collection and retrieval technologies, and v) greater cyber-infrastructure to process ‘big data’ collection, transmission and analyses while promoting data accessibility. These technologies must be widely available, performance and reliability must be improved and technologies used elsewhere must be applied to the Antarctic. Considerable Antarctic research is field-based, making access to vital geographical targets essential. Future research will require continent- and ocean-wide environmentally responsible access to coastal and interior Antarctica and the Southern Ocean. Year-round access is indispensable. The cost of future Antarctic science is great but there are opportunities for all to participate commensurate with national resources, expertise and interests. The scope of future Antarctic research will necessitate enhanced and inventive interdisciplinary and international collaborations. The full promise of Antarctic science will only be realized if nations act together.
During 1990 we surveyed the southern sky using a multi-beam receiver at frequencies of 4850 and 843 MHz. The half-power beamwidths were 4 and 25 arcmin respectively. The finished surveys cover the declination range between +10 and −90 degrees declination, essentially complete in right ascension, an area of 7.30 steradians. Preliminary analysis of the 4850 MHz data indicates that we will achieve a five sigma flux density limit of about 30 mJy. We estimate that we will find between 80 000 and 90 000 new sources above this limit. This is a revised version of the paper presented at the Regional Meeting by the first four authors; the surveys now have been completed.
People with Down syndrome (DS) are at high risk for developing dementia and early diagnosis is vital in enhancing quality of life. Our aim was to compare our practice to consensus recommendations on evaluation, diagnosis and pharmacological treatment of individuals with DS who develop dementia. We also aimed to establish the average time taken to make a diagnosis of dementia and to commence pharmacotherapy, and to assess tolerability to acetylcholinesterase inhibitors.
Methods
Retrospective chart review in an exhaustive sample containing all current service users attending our service with DS and a diagnosis of dementia (n=20).
Results
The sample was 75% female and 70% had a moderate intellectual disability. The average age at diagnosis of dementia was 52.42 years old. The average time to diagnosis from first symptom was 1.13 years and the average time to commence pharmacotherapy was 0.23 years. A total of 17 patients commenced on acetylcholinesterase inhibitors, and of these seven discontinued medication due to side-effects or lack of efficacy.
Conclusions
The results on anticholinesterases add to the limited pool of data on treatment of dementia in DS. There was an identified need to improve the rates of medical, vision and hearing assessments, and prospective screening. Deficiencies in screening and diagnosis may be addressed by implementing a standardised dementia assessment pathway to include prospective screening and longitudinal assessment using easily administered scales. We highlight the importance of improving the diagnostic process, as a vital window of opportunity to commence a comprehensive care plan may be lost.
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.
Earth history is punctuated by events during which large volumes of predominantly mafic magmas were generated and emplaced by processes that are generally accepted as being, unrelated to ‘normal’ sea-floor spreading and subduction processes. These events form large igneous provinces (LIPs) which are best preserved in the Mesozoic and Cenozoic where they occur as continental and ocean basin flood basalts, giant radiating dyke swarms, volcanic rifted margins, oceanic plateaus, submarine ridges, and seamount chains. The Mesozoic history of Antarctica is no exception in that a number of different igneous provinces were emplaced during the initial break-up and continued disintegration of Gondwana, leading to the isolation of Antarctica in a polar position. The link between the emplacement of the igneous rocks and continental break-up processes remains controversial. The environmental impact of large igneous province formation on the Earth System is equally debated. Large igneous province eruptions are coeval with, and may drive environmental and climatic effects including global warming, oceanic anoxia and/or increased oceanic fertilisation, calcification crises, mass extinction and release of gas hydrates.
This review explores the links between the emplacement of large igneous provinces in Antarctica, the isolation of Antarctica from other Gondwana continents, and possibly related environmental and climatic changes during the Mesozoic and Cenozoic.
The Hardy-Littlewood method is a means of estimating the number of integer solutions of equations and was first applied to Waring's problem on representations of integers by sums of powers. This introduction to the method deals with its classical forms and outlines some of the more recent developments. Now in its second edition, it has been fully updated; extensive revisions have been made and a new chapter added to take account of major advances by Vaughan and Wooley. The reader is expected to be familiar with elementary number theory and postgraduate students should find it of great use as an advanced textbook. It will also be indispensable to all lecturers and research workers interested in number theory and it is the standard reference on the Hardy-Littlewood method.