We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Background: Self-injurious behaviours (SIB) are repetitive, non-accidental movements that result in physical damage inflicted upon oneself, without suicidal intent. SIB are prevalent among children with autism spectrum disorder and can lead to permanent disability or death. Neuromodulation at a locus of neural circuitry implicated in SIB, the nucleus accumbens (NAc), may directly influence these behaviours. Methods: We completed a phase I, open-label clinical trial of deep brain stimulation (DBS) of the NAc in children with severe, treatment-refractory SIB (ClinicalTrials.gov NCT03982888). Participants were monitored for 12 months following NAc-DBS to assess the primary outcomes of safety and feasibility. Secondary outcomes included serial assessments of SIB, ambulatory actigraphy, and changes in brain glucose metabolism induced by DBS. Results: Six children underwent NAc-DBS without any serious adverse events. NAc-DBS resulted in significant reductions in SIB and SIB-associated behaviours across multiple standardized scales, concurrent with clinically meaningful improvements in quality-of-life. Ambulatory actigraphy showed reductions in high-amplitude limb movements and positron emission tomography revealed treatment-induced reductions in metabolic activity within the thalamus, striatum, and temporoinsular cortex. Conclusions: This first-in-children phase 1 clinical trial demonstrates the safety and feasibility of NAc-DBS in children with severe, refractory SIB at high risk of physical injury and death and supports further investigations.
Low vegetable intake is a key contributor to the health burden experienced by young adults in rural communities(1). Digital interventions provide an accessible delivery model that can be personalised to meet the diverse preferences of young adults(2). This study aimed to determine the feasibility, acceptability and efficacy of a personalised digital intervention to increase vegetable intake (Veg4Me), co-designed to meet the needs of young adults living in rural Australian communities(3). A 12-week assessor-blinded, two-arm, parallel randomised controlled trial was undertaken from August 2023 until April 2024. Young adults (18–35 years; consuming < 5 serves of vegetables/day; with an internet-connected device) living in Loddon Campaspe or Colac Otway Shire in Victoria, Australia, were recruited via social media and local government networks. Participants were randomised to receive 12 weeks of personalised (intervention) or non-personalised (control) support via a free web application (app; Veg4Me). Key features included 1) recipes personalised to users’ dietary and cooking preferences, 2) geo-located food environment map, 3) healthy eating resources, 4) goal-setting portal and 5) personalised e-newsletters. The primary outcome was feasibility: recruitment, participation and retention rate. Secondary outcomes were usability and user experience, perceived changed in vegetable intake, self-reported vegetable intake, and confidence to cook fresh green and root vegetables. Regression analyses (adjusted for baseline) were used to test for significant differences between groups. A total of n = 536 individuals registered on the Veg4Me website. After excluding fraudulent and duplicate responses (n = 289), n = 124 were eligible and provided consent to participate, n = 116 were randomised and n = 83 completed postintervention data collection. The recruitment rate was 47%, participation rate was 93% and retention rate was 72%. Compared to the control, more intervention participants were satisfied with Veg4Me (76% vs 52%). Most intervention participants reported that access to personalised recipes gave them confidence to eat a wider variety of vegetables (83%), while 76% accessed the food environment map, 63% accessed the healthy eating resources, 78% accessed the goal-setting function and 90% reported that the e-newsletters prompted them to access Veg4Me. Compared to the control, more intervention participants perceived that their vegetable intake had changed in the last 12 weeks (85% vs 57%; p = 0.013). Mean vegetable intake at 12 weeks in intervention and control participants was 2.7 (SD 1.0) and 2.7 (SD 1.4) serves/day, respectively (p = 0.67). Confidence to cook fresh green vegetables at 12 weeks in intervention and control participants was 93% and 91%, respectively (p = 0.24), while for root vegetables this was 88% and 81%, respectively (p = 0.11). Findings demonstrate the feasibility and acceptability of the Veg4Me intervention, and some evidence of efficacy. This study introduces a new strategy that has promise for addressing diet and health inequities experienced by young adults living in rural communities.
This study characterizes 2008-2022 FDA advisory committee discussions of new supplemental indication applications that were not approved by FDA. Discussion themes included contextual concerns unique to already-approved drugs, including insights from prior experience and concerns about off-label use, and efficacy and safety concerns also observed for new drugs. These findings highlight advisory committees’ role in transparency of regulatory decision-making, specifically for drugs already authorized for use.
Background: Over the past decade, worldwide stroke incidence has been increasing among young adults (≤65years), which has implications during the most dynamic period of their life. There is a dearth of research exploring young adults stroke patients’ experiences, healthy lifestyle habits, preferences, and recommendations for brain care-related initiatives. The study aimed to gain knowledge and a deeper understanding of young adult stroke patients’ experiences, lifestyle habits, and support needs for brain care-related education and interventions. Methods: A descriptive qualitative study was used. Participants who took part in the quantitative phase of a larger mixed methods study (n=103 that expressed an interest in the qualitative phase, were invited to take part in semi-structured focus groups. Simultaneous data collection and analysis are being conducted. Data are being analyzed using inductive thematic analysis outlined by Braun and Clarke (2006). Results: Findings will be available by May 20, 2024. Conclusions: Study findings will be essential to 1) mobilize an understanding of young adult stroke patients’ lived experience; 2) reconceptualize the current model of stroke care and services that is traditionally geared towards older adults; and 3) inform the development of brain care-related education and interventions to meet the unique needs, priorities, and preferences of young adult stroke patients.
Background: Medically refractory pediatric epilepsy is a disorder that can cause significant financial and physical burden. Although multiple treatments exist, cost-effectiveness remains unclear. We conducted a systematic review to assess cost-effectiveness of treatments for medically refractory pediatric epilepsy and to summarize key issues and areas for further inquiry. Methods: We searched MEDLINE and 6 other databases up to July 2022. We included partial and full economic evaluations (EEs) on treatments for medically refractory pediatric epilepsy. Pairs of reviewers independently screened the literature, extracted data, and assessed quality using the 24-item Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist. We extracted data on study characteristics, health outcomes, model design, costs, and treatment characteristics. Results: We identified 37 eligible studies for analysis, 19 of which were partial EEs and 18 were full EEs. Study quality, outcomes reported, treatment comparators, and factors included in cost calculations were common influential factors in study results. Vagus nerve stimulation and cannabinoid oil were the most consistently cost-effective, in 6 of 7 and 1 of 2 studies, respectively. Other treatments were inconsistently cost-effective. Conclusions: The cost-effectiveness of treatments for medically refractory pediatric epilepsy was not definitive. Consistency in study design and inputs is necessary for future comparison of epilepsy treatment.
Diets low in vegetables are a main contributor to the health burden experienced by Australians living in rural communities. Given the ubiquity of smartphones and access to the Internet, digital interventions may offer an accessible delivery model for a dietary intervention in rural communities. However, no digital interventions to address low vegetable intake have been co-designed with adults living in rural areas(1). This research aims to describe the co-design of a digital intervention to improve vegetable intake with rural community members and research partners. Active participants in the co-design process were adults ≥18 years living in three rural Australian communities (total n = 57) and research partners (n = 4) representing three local rural governments and one peak non-government health organisation. An iterative co-design process(2) was undertaken to understand the needs (pre-design phase) and ideas (generative phase) of the target population through eight online workshops and a 21-item online community survey between July and December 2021. Prioritisation methods were used to help workshop participants identify the ‘Must-have, Should-have, Could-have, and Won’t-have or will not have right now’ (MoSCoW) features and functions of the digital intervention. Workshops were transcribed and inductively analysed using NVivo. Convergent and divergent themes were identified between the workshops and community survey to identify how to implement the digital intervention in the community. Consensus was reached on a concept for a digital intervention that addressed individual and food environment barriers to vegetable intake, specific to rural communities. Implementation recommendations centred on i) food literacy approaches to improve skills via access to vegetable-rich recipes and healthy eating resources, ii) access to personalisation options and behaviour change support, and iii) improving the community food environment by providing information on and access to local food initiatives. Rural-dwelling adults expressed preferences for personalised intervention features that can enhance food literacy and engagement with community food environments. This co-design process will inform the development of a prototype (evaluation phase) and feasibility testing (post-design phase) of this intervention. The resulting intervention is anticipated to reduce barriers and support enablers, across individual and community levels, to facilitate higher consumption of vegetables among rural Australians. These outcomes have the potential to contribute to improved wellbeing in the short term and reduced chronic disease risk in the long term, decreasing public health inequities.
In this paper, we investigate the attitude manoeuver planning and tracking control of the flexible satellite equipped with a coilable mast. Due to its flexible beamlike structure, the coilable mast experiences bending and torsional modal vibrations in multi-direction. The complex nonlinear coupling and other external disturbances significantly impact the achievement of high-precision attitude control. To overcome these challenges, a robust attitude tracking controller is proposed for easy implementation by the Attitude Determination and Control System (ADCS). The controller consists of a disturbance compensator, feedforward controller and output feedback controller. The compensator, based on a Nonlinear Disturbance Observer (NDO), effectively compensates for the cluster disturbances caused by vibrations, environmental factors and parameter perturbations. The feedforward controller tracks the desired path in the nominal satellite model. Furthermore, the output feedback controller enables large-angle manoeuver control of the satellite and evaluates the suppression effect of the controlled output on the observation error of cluster disturbances used the ${L_2}$-gain. Simulation results demonstrate that the proposed controller successfully achieves high-precision attitude tracking control during large-angle manoeuvering.
This paper proposes a fixed-time anti-saturation (FT-AS) control scheme with a simple control loop for the 6-Degree-of-Freedom tracking (6-DOF) control problem of spacecraft with parameter uncertainties, external disturbances and input saturation. Considering the external disturbance and parameter uncertainties, the dynamical model of the tracking error is established. The traditional methods of handling input saturation usually add anti-saturation subsystems in the control system to suppress the impact of input overshoot. However, this paper directly inputs the input overshoot into the tracking error model, thus constructing a modified lumped disturbance term that includes the influence of input overshoot. Then, a novel fixed-time disturbance observer (FT-DO) is designed to estimate and compensate for this modified lumped disturbance. Therefore, there is no need to add the anti-saturation structures in the control loop, significantly reducing the complexity of the system. Finally, an observer-based fixed-time non-singular terminal sliding mode (FT-NTSM) controller is designed to guarantee the fixed-time stability of the whole system. In this way, the convergence time of the proposed scheme does not depend on the system’s initial conditions. Simulation results illustrate that the proposed method keeps the control input within the limit while achieving high-precision tracking control of attitude and position.
High-intensity vortex beams with tunable topological charges and low coherence are highly demanded in applications such as inertial confinement fusion (ICF) and optical communication. However, traditional optical vortices featuring nonuniform intensity distributions are dramatically restricted in application scenarios that require a high-intensity vortex beam owing to their ineffective amplification resulting from the intensity-dependent nonlinear effect. Here, a low-coherence perfect vortex beam (PVB) with a topological charge as high as 140 is realized based on the super-pixel wavefront-shaping technique. More importantly, a globally adaptive feedback algorithm (GAFA) is proposed to efficiently suppress the original intensity fluctuation and achieve a flat-top PVB with dramatically reduced beam speckle contrast. The GAFA-based flat-top PVB generation method can pave the way for high-intensity vortex beam generation, which is crucial for potential applications in ICF, laser processing, optical communication and optical trapping.
Competition among the two-plasmon decay (TPD) of backscattered light of stimulated Raman scattering (SRS), filamentation of the electron-plasma wave (EPW) and forward side SRS is investigated by two-dimensional particle-in-cell simulations. Our previous work [K. Q. Pan et al., Nucl. Fusion 58, 096035 (2018)] showed that in a plasma with the density near 1/10 of the critical density, the backscattered light would excite the TPD, which results in suppression of the backward SRS. However, this work further shows that when the laser intensity is so high ($>{10}^{16}$ W/cm2) that the backward SRS cannot be totally suppressed, filamentation of the EPW and forward side SRS will be excited. Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage. Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW. This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
To establish the epidemiology of cardiac implantable electronic device (CIED) infections in Alberta, Canada, using validated administrative data.
Design:
Retrospective, population-based cohort study.
Setting:
Alberta Health Services is a province-wide health system that services all of Alberta, Canada.
Participants:
Adult patients who underwent first-time CIED implantation or generator replacement in Alberta, Canada, between January 1, 2011, and December 31, 2019.
Methods:
CIED implant patients were identified from the Paceart database. Patients who developed an infection within 1 year of the index procedure were identified through validated administrative data (International Classification of Diseases, Tenth Revision in Canada). Demographic characteristics of patients were summarized. Logistic regression models were used to analyze device type, comorbidities, and demographics associated with infection rates and mortality.
Results:
Among 27,830 CIED implants, there were 205 infections (0.74%). Having 2 or more comorbidities was associated with higher infection risk. Generator replacement procedures (odds ratio [OR], 0.55; 95% confidence interval [CI], 0.34–0.84; P = .008), age increase of every 10 years (OR, 0.73; 95% CI, 0.66–0.82; P ≤ .001), and index procedure after 2014 were associated with decreased risk. Comparing the infected to uninfected groups, the hospitalization rates were 2.63 compared to 0.69, and the mortality rates were 10.73% compared to 3.49%, respectively (P < .001).
Conclusions:
There is a slightly lower overall rate of CIED infections Alberta, Canada compared to previously described epidemiology. Implants after 2014, and generator replacements showed a decreased burden of infection. Patients with younger age, and 2 or more comorbidities are at greatest risk of CIED infection. The burden of hospitalization and mortality is substantially higher in infected patients.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
We describe a new low-frequency wideband radio survey of the southern sky. Observations covering 72–231 MHz and Declinations south of $+30^\circ$ have been performed with the Murchison Widefield Array “extended” Phase II configuration over 2018–2020 and will be processed to form data products including continuum and polarisation images and mosaics, multi-frequency catalogues, transient search data, and ionospheric measurements. From a pilot field described in this work, we publish an initial data release covering 1,447$\mathrm{deg}^2$ over $4\,\mathrm{h}\leq \mathrm{RA}\leq 13\,\mathrm{h}$, $-32.7^\circ \leq \mathrm{Dec} \leq -20.7^\circ$. We process twenty frequency bands sampling 72–231 MHz, with a resolution of 2′–45′′, and produce a wideband source-finding image across 170–231 MHz with a root mean square noise of $1.27\pm0.15\,\mathrm{mJy\,beam}^{-1}$. Source-finding yields 78,967 components, of which 71,320 are fitted spectrally. The catalogue has a completeness of 98% at ${{\sim}}50\,\mathrm{mJy}$, and a reliability of 98.2% at $5\sigma$ rising to 99.7% at $7\sigma$. A catalogue is available from Vizier; images are made available via the PASA datastore, AAO Data Central, and SkyView. This is the first in a series of data releases from the GLEAM-X survey.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
Background: Proteogenomics, the integration of proteomics and RNASeq expands the discovery landscape for candidate expressed gene networks to obtain novel insights into host response in post-infectious hydrocephalus (PIH). We examined the cerebrospinal fluid (CSF) of infants with PIH, and case controlled against age-matched infants with non-postinfectious hydrocephalus (NPIH) to probe the molecular mechanisms of PIH, leveraging molecular identification of bacterial and viral pathogens. Methods: Ventricular CSF samples of 100 infants ≤ 3 months of age with PIH (n=64) and NPIH (n=36) were analyzed with proteomics and RNASeq. 16S rRNA/DNA sequencing and virome capture identified Paenibacillus spp. and cytomegalovirus as dominant pathogenetic bacteria implicated in our PIH cohort. Proteogenomics assessed differential expression, gene set enrichment and activated gene pathways. Results: Of 616 proteins and 11,114 genes, there was enrichment for the immune system, cell-cell junction signaling and response to oxidative stress. Proteogenomics yielded 33 functionally and genetically associated gene sets related to neutrophil activation, platelet activation, and cytokines (interleukins and interferon) signaling. Conclusions: We identified PIH patients with severe disease at time of hydrocephalus surgery, to have differential expression of proteins/genes involved in neuroinflammation, ependymal barrier integrity and reaction to oxidative stress. Further studies are needed to examine those proteins/genes as biomarkers for PIH.
Background: Proteogenomics, the integration of proteomics and RNASeq expands the discovery landscape for candidate expressed gene networks to obtain novel insights into host response in post-infectious hydrocephalus (PIH). We examined the cerebrospinal fluid (CSF) of infants with PIH, and case controlled against age-matched infants with non-postinfectious hydrocephalus (NPIH) to probe the molecular mechanisms of PIH, leveraging molecular identification of bacterial and viral pathogens. Methods: Ventricular CSF samples of 100 infants ≤ 3 months of age with PIH (n=64) and NPIH (n=36) were analyzed with proteomics and RNASeq. 16S rRNA/DNA sequencing and virome capture identified Paenibacillus spp. and cytomegalovirus as dominant pathogenetic bacteria implicated in our PIH cohort. Proteogenomics assessed differential expression, gene set enrichment and activated gene pathways. Results: Of 616 proteins and 11,114 genes, there was enrichment for the immune system, cell-cell junction signaling and response to oxidative stress. Proteogenomics yielded 33 functionally and genetically associated gene sets related to neutrophil activation, platelet activation, and cytokines (interleukins and interferon) signaling. Conclusions: We identified PIH patients with severe disease at time of hydrocephalus surgery, to have differential expression of proteins/genes involved in neuroinflammation, ependymal barrier integrity and reaction to oxidative stress. Further studies are needed to examine those proteins/genes as biomarkers for PIH.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
Our study was conducted to assess the sepsis-associated hospitalisations and antimicrobials prescribed for sepsis inpatients in Hong Kong. Demographic, diagnostic and antimicrobial prescription data were analysed for patients admitted to public hospitals with a diagnosis of septicaemia from 2000 to 2015. A total of 223 250 sepsis hospitalisations were recorded in Hong Kong from 2000 to 2015 during which the hospitalisation rate increased by 85.6%. The majority of the sepsis hospitalisations occurred in adults ≥65 years and children aged 0–4 years. Adults with a secondary diagnosis of sepsis were often admitted with a primary diagnosis of urological conditions or pneumonia; whereas diabetes mellitus was the most common secondary diagnosis among those with primary sepsis. Paediatric sepsis patients aged 0–4 years were often diagnosed with disorders relating to short gestation and low birthweight. Antimicrobial prescriptions increased by 51.1% and 34.4% for primary and secondary sepsis patients, respectively. β-Lactam and β-lactamase inhibitor combinations were the most used antibiotics whereas the usage of carbapenems increased more than 10 times over the study period. A substantial burden of hospitalisations was attributable to sepsis in Hong Kong, particularly in the extremes of age. Broad-spectrum and last-resort antibiotics had been increasingly dispensed for sepsis inpatients.