We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Herbaceous perennials must annually rebuild the aboveground photosynthetic architecture from carbohydrates stored in crowns, rhizomes, and roots. Knowledge of carbohydrate utilization and storage can inform management decisions and improve control outcomes for invasive perennials. We monitored the nonstructural carbohydrates in a population of the hybrid Bohemian knotweed [Polygonum ×bohemicum (J. Chrtek & Chrtková) Zika & Jacobson [cuspidatum × sachalinense]; syn.: Fallopia ×bohemica (Chrtek and Chrtková) J.P. Bailey] and in Japanese knotweed [Polygonum cuspidatum Siebold & Zucc.; syn.: Fallopia japonica (Houtt.) Ronse Decr.]. Carbohydrate storage in crowns followed seasonal patterns typical of perennial herbaceous dicots corresponding to key phenological events. Starch was consistently the highest nonstructural carbohydrate present. Sucrose levels did not show a consistent inverse relationship with starch levels. Lateral distribution of starch in rhizomes and, more broadly, total nonstructural carbohydrates sampled before dormancy break showed higher levels in rhizomes compared with crowns. Total nonstructural carbohydrate levels in crowns reached seasonal lows at an estimated 22.6% of crown dry weight after accumulating 1,453.8 growing degree days (GDD) by the end of June, mainly due to depleted levels of stored starch, with the estimated minimum of 12.3% reached by 1,220.3 GDD accumulated by mid-June. Depletion corresponded to rapid development of vegetative canopy before entering the reproductive phase in August. Maximum starch accumulation in crowns followed complete senescence of aboveground tissues by mid- to late October. Removal of aboveground shoot biomass in late June to early July with removal of vegetation regrowth in early September before senescence would optimize the use of time and labor to deplete carbohydrate reserves. Additionally, foliar-applied systemic herbicide translocation to belowground tissue should be maximized with applications in late August through early fall to optimize downward translocation with assimilate movement to rebuild underground storage reserves. Fall applications should be made before loss of healthy leaf tissue, with the window for control typically ending by late September in Minnesota.
To assess the impact of the COVID-19 pandemic on first-episode psychosis (FEP) presentations across two Early Intervention in Psychosis (EIP) services in Ireland, by comparing pre-pandemic and post-pandemic cohorts.
Methods:
A cross-sectional observational design with retrospective medical record review was employed. The study population comprised 187 FEP patients (77 in pre-pandemic and 110 in post-pandemic cohort). Outcomes measured included duration of untreated psychosis (DUP), FEP presentation numbers, referral sources, global assessment of functioning scores, inpatient admissions, substance misuse and service delivery methods. Statistical analyses utilised chi-square tests to assess categorical variables, Mann–Whitney U tests to compare non-normally distributed continuous variables and Kruskal–Wallis tests to examine interactions between categorical and continuous variables.
Results:
A significant increase in FEP presentations was observed in the post-pandemic cohort (p = 0.003), with an increase in all urban areas and a decrease in the study’s only rural area. The difference in DUP between cohorts was not significant. However, significant interaction between gender, cohort and DUP was shown (p = 0.008), with women in the post-pandemic cohort experiencing longer DUP (p = 0.01). A significant rise in telephone (p = 0.05) and video consultations (p = 0.001) offered was observed, in the post-pandemic cohort. A similar number of in-person appointments were attended across both cohorts.
Conclusions:
This study highlights the impact of the pandemic on FEP presentations, particularly rurally and regarding increased DUP among women. These findings underscore the need for flexible EIP services to respond to public health crises. Despite increased presentations, services adapted, maintaining service continuity through telehealth and modified in-person contact.
Background: We evaluated vorasidenib (VOR), a dual inhibitor of mIDH1/2, in patients with mIDH1/2 glioma (Phase 3; NCT04164901). Methods: Patients with residual/recurrent grade 2 mIDH1/2 oligodendroglioma or astrocytoma were enrolled (age ≥12; Karnofsky Performance Score ≥80; measurable non-enhancing disease; surgery as only prior treatment; not in immediate need of chemoradiotherapy). Patients were stratified by 1p19q status and baseline tumor size and randomized 1:1 to VOR 40 mg or placebo (PBO) daily in 28-day cycles. Endpoints included imaging-based progression-free survival (PFS), time to next intervention (TTNI), tumor growth rate (TGR), health-related quality of life (HRQoL), neurocognition and seizure activity. Results: 331 patients were randomized (VOR, 168; PBO, 163). The median age was 40.0 years. 172 and 159 patients had histologically confirmed oligodendroglioma and astrocytoma, respectively. Treatment with VOR significantly improved PFS and TTNI. Median PFS: VOR, 27.7 mos; PBO, 11.1 mos (P=0.000000067). Median TTNI: VOR, not reached; PBO, 17.8 mos (P=0.000000019). Treatment with VOR resulted in shrinkage of tumor volume. Post-treatment TGR: VOR, -2.5% (95% CI: -4.7, -0.2); PBO, 13.9% (95% CI: 11.1, 16.8). HRQoL and neurocognition were preserved and seizure control was maintained. VOR had a manageable safety profile. Conclusions: VOR was effective in mIDH1/2 diffuse glioma not in immediate need of chemoradiotherapy.
NASA’s all-sky survey mission, the Transiting Exoplanet Survey Satellite (TESS), is specifically engineered to detect exoplanets that transit bright stars. Thus far, TESS has successfully identified approximately 400 transiting exoplanets, in addition to roughly 6 000 candidate exoplanets pending confirmation. In this study, we present the results of our ongoing project, the Validation of Transiting Exoplanets using Statistical Tools (VaTEST). Our dedicated effort is focused on the confirmation and characterisation of new exoplanets through the application of statistical validation tools. Through a combination of ground-based telescope data, high-resolution imaging, and the utilisation of the statistical validation tool known as TRICERATOPS, we have successfully discovered eight potential super-Earths. These planets bear the designations: TOI-238b (1.61$^{+0.09} _{-0.10}$ R$_\oplus$), TOI-771b (1.42$^{+0.11} _{-0.09}$ R$_\oplus$), TOI-871b (1.66$^{+0.11} _{-0.11}$ R$_\oplus$), TOI-1467b (1.83$^{+0.16} _{-0.15}$ R$_\oplus$), TOI-1739b (1.69$^{+0.10} _{-0.08}$ R$_\oplus$), TOI-2068b (1.82$^{+0.16} _{-0.15}$ R$_\oplus$), TOI-4559b (1.42$^{+0.13} _{-0.11}$ R$_\oplus$), and TOI-5799b (1.62$^{+0.19} _{-0.13}$ R$_\oplus$). Among all these planets, six of them fall within the region known as ‘keystone planets’, which makes them particularly interesting for study. Based on the location of TOI-771b and TOI-4559b below the radius valley we characterised them as likely super-Earths, though radial velocity mass measurements for these planets will provide more details about their characterisation. It is noteworthy that planets within the size range investigated herein are absent from our own solar system, making their study crucial for gaining insights into the evolutionary stages between Earth and Neptune.
57Fe Mössbauer spectra of a cleaned Weipa, Australia, kaolin showed that a considerable fraction of the structural iron exhibits paramagnetic relaxation between 4°K and 300°K, the first time that this has been observed for ferric ions in a mineral. The sample also contained a very fine particle ferric oxide/oxyhydroxide phase, probably of secondary origin.
57Fe Mössbauer spectra have been used to interpret the effects of different cleaning processes on the iron mineralogy of a Weipa, Australia, kaolin. A magnetically separated fraction contained 28% of its iron as hematite likely of secondary origin. An initial centrifugal size separation was shown to give an improved final product, and oxalic acid was found to be more efficient at removing Fe from the kaolinite surface than dithionite bleach. The Mössbauer spectra clearly show that beneficiation steps which give a substantial increase in kaolin brightness result in only minor changes in the clay iron mineralogy. Similar results were also obtained for two commercially available kaolins.
High-quality evidence is lacking for the impact on healthcare utilisation of short-stay alternatives to psychiatric inpatient services for people experiencing acute and/or complex mental health crises (known in England as psychiatric decision units [PDUs]). We assessed the extent to which changes in psychiatric hospital and emergency department (ED) activity were explained by implementation of PDUs in England using a quasi-experimental approach.
Methods
We conducted an interrupted time series (ITS) analysis of weekly aggregated data pre- and post-PDU implementation in one rural and two urban sites using segmented regression, adjusting for temporal and seasonal trends. Primary outcomes were changes in the number of voluntary inpatient admissions to (acute) adult psychiatric wards and number of ED adult mental health-related attendances in the 24 months post-PDU implementation compared to that in the 24 months pre-PDU implementation.
Results
The two PDUs (one urban and one rural) with longer (average) stays and high staff-to-patient ratios observed post-PDU decreases in the pattern of weekly voluntary psychiatric admissions relative to pre-PDU trend (Rural: −0.45%/week, 95% confidence interval [CI] = −0.78%, −0.12%; Urban: −0.49%/week, 95% CI = −0.73%, −0.25%); PDU implementation in each was associated with an estimated 35–38% reduction in total voluntary admissions in the post-PDU period. The (urban) PDU with the highest throughput, lowest staff-to-patient ratio and shortest average stay observed a 20% (−20.4%, CI = −29.7%, −10.0%) level reduction in mental health-related ED attendances post-PDU, although there was little impact on long-term trend. Pooled analyses across sites indicated a significant reduction in the number of voluntary admissions following PDU implementation (−16.6%, 95% CI = −23.9%, −8.5%) but no significant (long-term) trend change (−0.20%/week, 95% CI = −0.74%, 0.34%) and no short- (−2.8%, 95% CI = −19.3%, 17.0%) or long-term (0.08%/week, 95% CI = −0.13, 0.28%) effects on mental health-related ED attendances. Findings were largely unchanged in secondary (ITS) analyses that considered the introduction of other service initiatives in the study period.
Conclusions
The introduction of PDUs was associated with an immediate reduction of voluntary psychiatric inpatient admissions. The extent to which PDUs change long-term trends of voluntary psychiatric admissions or impact on psychiatric presentations at ED may be linked to their configuration. PDUs with a large capacity, short length of stay and low staff-to-patient ratio can positively impact ED mental health presentations, while PDUs with longer length of stay and higher staff-to-patient ratios have potential to reduce voluntary psychiatric admissions over an extended period. Taken as a whole, our analyses suggest that when establishing a PDU, consideration of the primary crisis-care need that underlies the creation of the unit is key.
We present seismic measurements of the firn column at Korff Ice Rise, West Antarctica, including measurements of compressional-wave velocity and attenuation. We describe a modified spectral-ratio method of measuring the seismic quality factor (Q) based on analysis of diving waves, which, combined with a stochastic method of error propagation, enables us to characterise the attenuative structure of firn in greater detail than has previously been possible. Q increases from 56 ± 23 in the uppermost 12 m to 570 ± 450 between 55 and 77 m depth. We corroborate our method with consistent measurements obtained via primary reflection, multiple, source ghost, and critically refracted waves. Using the primary reflection and its ghost, we find Q = 53 ± 20 in the uppermost 20 m of firn. From the critical refraction, we find Q = 640 ± 400 at 90 m depth. Our method aids the understanding of the seismic structure of firn and benefits characterisation of deeper glaciological targets, providing an alternative means of correcting seismic reflection amplitudes in cases where conventional methods of Q correction may be impossible.
We recently reported on the radio-frequency attenuation length of cold polar ice at Summit Station, Greenland, based on bi-static radar measurements of radio-frequency bedrock echo strengths taken during the summer of 2021. Those data also allow studies of (a) the relative contributions of coherent (such as discrete internal conducting layers with sub-centimeter transverse scale) vs incoherent (e.g. bulk volumetric) scattering, (b) the magnitude of internal layer reflection coefficients, (c) limits on signal propagation velocity asymmetries (‘birefringence’) and (d) limits on signal dispersion in-ice over a bandwidth of ~100 MHz. We find that (1) attenuation lengths approach 1 km in our band, (2) after averaging 10 000 echo triggers, reflected signals observable over the thermal floor (to depths of ~1500 m) are consistent with being entirely coherent, (3) internal layer reflectivities are ≈–60$\to$–70 dB, (4) birefringent effects for vertically propagating signals are smaller by an order of magnitude relative to South Pole and (5) within our experimental limits, glacial ice is non-dispersive over the frequency band relevant for neutrino detection experiments.
Until recently, the influence of basal liquid water on the evolution of buried glaciers in Mars' mid latitudes was assumed to be negligible because the latter stages of Mars' Amazonian period (3 Ga to present) have long been thought to have been similarly cold and dry to today. Recent identifications of several landforms interpreted as eskers associated with these young (100s Ma) glaciers calls this assumption into doubt. They indicate basal melting (at least locally and transiently) of their parent glaciers. Although rare, they demonstrate a more complex mid-to-late Amazonian environment than was previously understood. Here, we discuss several open questions posed by the existence of glacier-linked eskers on Mars, including on their global-scale abundance and distribution, the drivers and dynamics of melting and drainage, and the fate of meltwater upon reaching the ice margin. Such questions provide rich opportunities for collaboration between the Mars and Earth cryosphere research communities.
Background: Despite a higher prevalence of traumatic spinal cord injury (TSCI) amongst Canadian Indigenous peoples, there is a paucity of studies focused on Indigenous TSCI. We present the first Canada-wide study comparing TSCI amongst Canadian Indigenous and non-Indigenous peoples. Methods: This study is a retrospective analysis of prospectively-collected TSCI data from the Rick Hansen Spinal Cord Injury Registry (RHSCIR) from 2004-2019. We divided participants into Indigenous and non-Indigenous cohorts and compared them with respect to demographics, injury mechanism, level, severity, and outcomes. Results: Compared with non-Indigenous patients, Indigenous patients were younger, more female, less likely to have higher education, and less likely to be employed. The mechanism of injury was more likely due to assault or transportation-related trauma in the Indigenous group. The length of stay for Indigenous patients was longer. Indigenous patients were more likely to be discharged to a rural setting, less likely to be discharged home, and more likely to be unemployed following injury. Conclusions: Our results suggest that more resources need to be dedicated for transitioning Indigenous patients sustaining a TSCI to community living and for supporting these patients in their home communities. A focus on resources and infrastructure for Indigenous patients by engagement with Indigenous communities is needed.
Over the last 25 years, radiowave detection of neutrino-generated signals, using cold polar ice as the neutrino target, has emerged as perhaps the most promising technique for detection of extragalactic ultra-high energy neutrinos (corresponding to neutrino energies in excess of 0.01 Joules, or 1017 electron volts). During the summer of 2021 and in tandem with the initial deployment of the Radio Neutrino Observatory in Greenland (RNO-G), we conducted radioglaciological measurements at Summit Station, Greenland to refine our understanding of the ice target. We report the result of one such measurement, the radio-frequency electric field attenuation length $L_\alpha$. We find an approximately linear dependence of $L_\alpha$ on frequency with the best fit of the average field attenuation for the upper 1500 m of ice: $\langle L_\alpha \rangle = ( ( 1154 \pm 121) - ( 0.81 \pm 0.14) \, ( \nu /{\rm MHz}) ) \,{\rm m}$ for frequencies ν ∈ [145 − 350] MHz.
Although it is well known that parental depression is transmitted within families across generations, the etiology of this transmission remains unclear. Our goal was to develop a novel study design capable of explicitly examining the etiologic sources of intergenerational transmission. We specifically leveraged naturally-occurring variations in genetic relatedness between parents and their adolescent children in the 720 families participating in the Nonshared Environment in Adolescent Development (NEAD) study, 58.5% of which included a rearing stepparent (nearly always a stepfather). Results pointed squarely to the environmental transmission of psychopathology between fathers and children. Paternal depression was associated with adolescent depression and adolescent behavior problems (i.e., antisocial behavior, headstrong behavior, and attention problems) regardless of whether or not fathers and their children were genetically related. Moreover, these associations persisted to a subset of “blended” families in which the father was biologically related to one participating child but not to the other, and appeared to be mediated via father–child conflict. Such findings are not only fully consistent with the environmental transmission of psychopathology across generations, but also add to extant evidence that parent–child conflict is a robust and at least partially environmental predictor of adolescent psychopathology.
Early in the COVID-19 pandemic, the World Health Organization stressed the importance of daily clinical assessments of infected patients, yet current approaches frequently consider cross-sectional timepoints, cumulative summary measures, or time-to-event analyses. Statistical methods are available that make use of the rich information content of longitudinal assessments. We demonstrate the use of a multistate transition model to assess the dynamic nature of COVID-19-associated critical illness using daily evaluations of COVID-19 patients from 9 academic hospitals. We describe the accessibility and utility of methods that consider the clinical trajectory of critically ill COVID-19 patients.
Response to lithium in patients with bipolar disorder is associated with clinical and transdiagnostic genetic factors. The predictive combination of these variables might help clinicians better predict which patients will respond to lithium treatment.
Aims
To use a combination of transdiagnostic genetic and clinical factors to predict lithium response in patients with bipolar disorder.
Method
This study utilised genetic and clinical data (n = 1034) collected as part of the International Consortium on Lithium Genetics (ConLi+Gen) project. Polygenic risk scores (PRS) were computed for schizophrenia and major depressive disorder, and then combined with clinical variables using a cross-validated machine-learning regression approach. Unimodal, multimodal and genetically stratified models were trained and validated using ridge, elastic net and random forest regression on 692 patients with bipolar disorder from ten study sites using leave-site-out cross-validation. All models were then tested on an independent test set of 342 patients. The best performing models were then tested in a classification framework.
Results
The best performing linear model explained 5.1% (P = 0.0001) of variance in lithium response and was composed of clinical variables, PRS variables and interaction terms between them. The best performing non-linear model used only clinical variables and explained 8.1% (P = 0.0001) of variance in lithium response. A priori genomic stratification improved non-linear model performance to 13.7% (P = 0.0001) and improved the binary classification of lithium response. This model stratified patients based on their meta-polygenic loadings for major depressive disorder and schizophrenia and was then trained using clinical data.
Conclusions
Using PRS to first stratify patients genetically and then train machine-learning models with clinical predictors led to large improvements in lithium response prediction. When used with other PRS and biological markers in the future this approach may help inform which patients are most likely to respond to lithium treatment.
We present the most sensitive and detailed view of the neutral hydrogen (${\rm H\small I}$) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal ${\rm H\small I}$ in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K ($1.6\,\mathrm{mJy\ beam}^{-1}$) $\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$ spectral channel with an angular resolution of $30^{\prime\prime}$ (${\sim}10\,\mathrm{pc}$). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire ${\sim}25\,\mathrm{deg}^2$ field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes ${\rm H\small I}$ test observations.
Adverse childhood experiences (ACEs) contribute to elevations in neuropsychiatric and neurocognitive symptoms in HIV+ adults. Emerging data suggest that exposures to threat-related and deprivation-related ACEs may have differential impacts on function, with threat exposure contributing to neuropsychiatric symptoms, and deprivation contributing to executive dysfunction. Yet, it remains unclear how specific types of ACEs impact neuropsychiatric and neurocognitive symptoms in HIV+ adults. Hence, the current study examined whether these two dimensions of adversity contribute differentially to neuropsychiatric symptoms and executive dysfunction in HIV+ adults.
Methods:
We included a sample of demographically matched HIV+ (N = 72) and HIV-negative (N = 85) adults. Standardized self-report measures assessed threat-related (interpersonal violence) and deprivation-related (poverty/neglect) ACEs, as well as neuropsychiatric symptoms (depression, anxiety, apathy). A brief battery of neuropsychological tests assessed executive functions.
Results:
Compared to HIV-negative participants, HIV+ participants reported significantly higher rates of threat exposure (51% vs. 67%, p = .04), while rates of deprivation did not differ significantly (8% vs. 13%, p = .38). In the HIV+ sample, threat exposure was associated with neuropsychiatric symptoms (p < .01) but not executive dysfunction (p = .75). By contrast, deprivation was associated with executive dysfunction, at a trend level (p = .09), but not with neuropsychiatric symptoms (p = .70).
Conclusions:
Our data suggest that, relative to HIV-negative samples, HIV+ samples experience higher rates of threat-related ACEs, which contribute to neuropsychiatric symptom elevations. Moreover, our preliminary findings suggest that different types of ACEs could be associated with different profiles of neuropsychiatric and neurocognitive difficulty in HIV+ adults, highlighting the importance of considering dimensions of adversity in future studies.