We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recent changes to US research funding are having far-reaching consequences that imperil the integrity of science and the provision of care to vulnerable populations. Resisting these changes, the BJPsych Portfolio reaffirms its commitment to publishing mental science and advancing psychiatric knowledge that improves the mental health of one and all.
Depression is an alarming burden in India causing substantial disability and cost to society. Recognizing depression is difficult because patients present predominantly with somatic symptoms or because attention is primarily focused on the co-morbid physical disorder. The cases of depression presenting in primary-care settings are either not identified or treated with inappropriate drugs or inadequate doses of anti-depressants.
Objective
To analyze current level of intervention done by non-psychiatrists to detect and manage depression in patients with chronic medical illnesses.
Methods
A panel of nine specialists (Cardiologists, Neurologists, Endocrinologists and Psychiatrists) discussed current Indian scenario of management of co-morbid depression by non-psychiatrists.
Results
The panel agreed that
• Prevalence of co-morbid depression in India is not well-documented except for few regional studies.
• It is frequently witnessed but is hardly recognized or managed as a concurrent disease.
• There is a need to differentiate between depressive 'feeling” and 'disease”.
• The clinicians should increase duration of history-taking to include questions like, 'Do you feel sad/low? Are you disinterested?” in suspected cases.
• There is a need for developing Indian consensus to identify co-morbid depression, to decide when to start an antidepressant drug, in what dosage and duration with special focus on the when to refer to a psychiatrist.
Conclusion
Concrete steps are required towards large-scale data generation and development of Indian consensus on the management of co-morbid depression in patients with chronic medical illnesses for the non-psychiatrists to improvise patient health outcome.
This paper presents a systematic formulation for the simulation of rigid body dynamics, including the short period dynamics, inherent to stage separation and jettisoning parts of a satellite launcher. This also gives a review of various types of separations involved in a launch vehicle. The problem is sufficiently large and complex; the methodology involves iterations at successively lower levels of abstraction. The best choice to tackle such problems is to use state-of-the-art programming technique known as object oriented programming. The necessary classes have been identified to represent various entities in the launch vehicle separation process (e.g., gravity, aerodynamics, propulsion and separation mechanisms etc.). Simple linkages are modelled with suitable objects. This approach helps the designer to simulate a launch vehicle separation dynamics and also to analyse separation system performance. To examine the influence of the design variables on the separating bodies, statistical analyses have been performed on the upper stage separation process and pull out of ongoing stage nozzle from the spent stage of a multistage rocket carrier using retro rockets.
Rabies is a major public health problem in Bangladesh, where most of the population live in rural areas. However, there is little epidemiological information on rabies in rural Bangladesh. This study was conducted in 30 upazilas (subdistricts) covering all six divisions of the country, to determine the levels of rabies and animal bites in Bangladesh. The total population of these upazilas was 6 992 302. A pretested questionnaire was used and data were collected by interviewing the adult members of families. We estimated that in Bangladesh, 166 590 [95% confidence interval (CI) 163 350–170 550] people per year are bitten by an animal. The annual incidence of rabies deaths in Bangladesh was estimated to be 1·40 (95% CI 1·05–1·78)/100 000 population. By extrapolating this, we estimated that 2100 (95% CI 1575–2670) people die annually from rabies in Bangladesh. More than three-quarters of rabies patients died at home. This community-based study provides new information on rabies epidemiology in Bangladesh.
In this paper, we report on the growth and fabrication of thin film Si photovoltaic devices on photonic structures which were fabricated on steel and PEN and Kapton substrates. Both amorphous Si and thin film nanocrystalline Si devices were fabricated. The 2 dimensional photonic reflector structures were designed using a scattering matrix theory and consisted of appropriately designed holes/pillars which were imprinted into a polymer layer coated onto PEN, Kapton and stainless steel substrates. The photonic structures were coated with a thin layer of Ag and ZnO. Both single junction and tandem junction (amorphous/amorphous and amorphous/nanocrystalline) cells were fabricated on the photonic layers. It was observed that the greatest increase in short circuit current and efficiency in these cells due to the use of photonic reflectors was in nanocrystalline Si cells, where an increase in current approaching 30% (compared to devices fabricated on flat substrates) was obtained for thin (∼ 1 micrometer thick i layers) films of nano Si deposited on steel structures. The photonic structures (which were nanoimprinted into a polymer) were shown to stand up to temperatures as large as 300 C, thereby making such structures practical when a steel (or glass) of kapton substrate is used. Detailed measurements and discussion of quantum efficiency and device performance for various photonic back reflector structures on steel, kapton and PEN substrates will be presented in the paper.
Para-Bose coherent states, defined as “displaced” ground states, are obtained using the differential operator representation for the annihilation operator.
Background: Depression in the elderly is a common and disabling condition. The aim of the study was to evaluate the sensitivity and specificity of a two-question screen to identify depression and common mental disorders in the elderly.
Method: Residents of a ward in the town of Vellore were identified by a door-to-door survey from which 204 subjects aged over 60 years were selected for the study by systematic random sampling. They were screened using the two-question screen. The Revised Clinical Interview Schedule (CIS-R) was employed to confirm the diagnosis.
Results: The prevalence of depression and common mental disorder, using the CIS-R standard, was found to be 31.5%. The two-question screen has a sensitivity of 93.8% and specificity of 48.2%.
Conclusions: The high sensitivity of the two-question screen makes it a useful screening method which can be employed by health workers in the field.
We report a rare case of iatrogenic pseudoaneurysm of the internal carotid artery secondary to endoscopic sphenoid surgery.
Method:
The management of this unusual complication and a review of the literature are presented.
Results:
A 65-year-old woman presented with intractable epistaxis four days following endoscopic sphenoid sinus surgery. Initial, conservative measures were unsuccessful in controlling bleeding. The clinical picture of delayed, severe epistaxis after a sphenoid sinus exploration raised the possibility of injury to the internal carotid artery and subsequent formation of a false aneurysm. The patient's pseudoaneurysm was managed, without visualising it, by packing the sphenoid sinus (achieved by palpating 1 cm above the shoulder of the posterior choana) in order to gain control of the haemorrhage, followed by endovascular occlusion.
Conclusion:
An awareness of this rare complication is essential in order to manage this life-threatening condition efficiently.
Highly porous Ni-8YSZ anodes supported by a thin and dense electrolyte layer of 8YSZ have been developed for solid oxide fuel cell applications by reducing a NiO-8YSZ anode/electrolye precursor structure in a gas mixture of 5% H2-95% Ar at 800°C for selected time periods up to 8 h. It appears that 2 h of exposure to the reducing conditions is enough to reduce∼80% of NiO. XRD and SEM analyses in the reduced samples disclose the formation of the Ni-8YSZ cermet structure with desired porosity and microstructure. The porosity in the anode samples, which increases with the increase in the fraction of reduced NiO, severely affects the hardness and elastic moduli of the anode samples. Vickers indentation tests show that a hardness value of 5.5 GPa in the unreduced anode samples (12% porosity) reduces to less than 1 GPa in the 8 h reduced samples (36.68 % porosity). Similarly, a decrease of ˜44% in the Young's modulus and ˜40% in shear modulus is observed in the 8 h reduced samples through impulse excitation techniques, in comparison to the unreduced anode precursor. Since the elastic properties of fully dense Ni, NiO and YSZ are comparable to each other, the decrease in the magnitude in elastic moduli and hardness is attributed to the colossal increase in porosity as a result of the reduction of NiO in H2 atmosphere.
We present a supercritical CO2 (SCCO2) process for the preparation of nanoporous organosilicate thin films for ultralow dielectric constant materials. The porous structure was generated by SCCO2 extraction of a sacrificial poly(propylene glycol) (PPG) from a nanohybrid film, where the nanoscopic domains of PPG porogen are entrapped within the crosslinked poly(methylsilsesquioxane) (PMSSQ) matrix. As a comparison, porous structures generated by both the usual thermal decomposition (at approximately 450 °C) and by a SCCO2 process for 25 and 55 wt% porogen loadings were evaluated. It is found that the SCCO2 process is effective in removing the porogen phase at relatively low temperatures (<200 °C) through diffusion of the supercritical fluid into the phase-separated nanohybrids and selective extraction of the porogen phase. Pore morphologies generated from the two methods are compared from representative three-dimensional (3D) images built from small-angle x-ray scattering (SAXS) data.
Supercritical fluids (SF) have been used in a wide variety of applications:in industrial processes, analytical, waste detoxification, etc. Recently,its usefulness extends to the semiconductor industry. Researches have shownthat supercritical CO2 (SCCO2) can be used to removephotoresists and significantly reduce the amount of waste from solvents incomparison to conventional stripping techniques. SF will also find itsusefulness in cleaning high aspect ratio vias and deep trenches assemiconductor features shrink to submicron levels. We will report here theuse of supercritical CO2 treatments in extraction of porogensfrom a nanohybrid film fabricated via templated-porogen approach. Its use asa medium to repair the damage in porous films from plasma ashing will alsobe presented. The ability to tune the solvation and diffusion power of SCCO2 and to swell the film matrix make it a good medium forsilylation to restore hydrophobicity and functionalize the film.
This work presents a novel approach using supercritical carbon dioxide (SCCO2) to selectively extract poly(propylene glycol) (PPG) porogen from a poly(methylsilsesquioxane) (PMSSQ) matrix, which results in the formation of nanopores. Nanoporous thin films were prepared by spin-casting a solution containing appropriate quantities of PPG porogen and PMSSQ dissolved in PM acetate. The as-spun films were thermally cured at temperatures well below the thermal degradation temperature of the organic polymer to form a cross-linked organic/inorganic polymer hybrid. By selectively removing the CO2 soluble PPG porogen, open and closed pore structures are possible depending upon the porogen load and its distribution in the matrix before extraction. In the present work, two different loadings of PPG namely 25 wt.% and 55 wt.% were used. Both static SCCO2 and pulsed SCCO2/cosolvent treatments were used for PPG extraction. The initial results indicate that the pulsed SCCO2/cosolovent treatment was more efficient. Fourier transform infrared spectroscopy (FTIR) and refractive index measurements further corroborate the successful extraction of the porogens at relatively low temperatures (2000C). For the pure PMSSQ film, the k value is 3.1, whereas it is 1.46 and 2.27 for the open and closed pore compositions respectively after the static SCCO2 extraction and 430°C subsequent annealing. The reduction in the k-value is attributed to the formation of nanopores. The pore structure was verified from transmission electron microscopy (TEM), and from small-angle x-ray scattering (SAXS) measurements, the pore size was determined to be 1-3 nm for these films.
In this paper we have studied, the Burstein-Moss shift (BMS) in quantum wires (QWs) and quantum dots (QDs) of ternary and quaternary types of optoelectronic materials on the basis of a newly formulated electron dispersion law which occours as a result of heavy doping. It has been found, taking Hg1−xCdx.Te and In1−x.Gax.AsyP1−y lattice matched to InP as examples, that the BMS increases with :Lncreasing electron concentration and decreases with increasing film thickness in oscillatory manners for both types of quantum confinements, although the variations are totally band structure dependent. The numerical values of BMS is greatest in QDs and least in QWs together with the fact that the BMS in quaternary materials is greater than that of ternary comupounds. In addition the theoretical analysis is a quantitative agreement with the experimental datas as given elsewhere.
In this paper we have studied the dia and paramagnetic susceptibilities of the holes in ultrathin films of dilute magnetic materials in the presence of a quantizing magnetic field and compared the same with that of the bulk specimens under magnetic quantization for the purpose of relative comparison. It is found, taking Hg1−xMnxTe and Cd1−xMnxSe as examples, that both the susceptibilities increase with decreasing film thickness and increasing surface concentration in oscillatory Manners. The numerical values of the susceptibilities in ultrathin films of dilute magnetic materials are greater than that of the bulk and the theoretical analysis is in agreement with the experimental data as reported elsewhere.
We have studied the Einstein relation for the diffusivity. mobility ratio (7PT) on the basis of a newly derived electron energy spectrum in QW f tetragonal semiconductors, within the framework of K. P method by considering all types of anisotropies of the energy band parameters. It is found, taking n-Cd3 As2 as an example that the DUTZ increases with electron concentration and decreases with film thickness in an oscillatory manner respectively. The theoretical results are in good aoreement with the suggested experimental method of determining the DMR in degenerate semiconductors having arbitrary dispersion law.
We shall study the thermoelectric power under classically large magnetic field (TPM) in optoelectronic materials of quantum wells (QWs), quantum well wires (QWW's), quantum dots (QDs) and compare the same with the bulk specimens of optoelectronic materials by formulating the respective electron dispersion law. The TPM increases with decreasing electron concentration in an oscillatory manner in all the cases, taking n-Hg1−xCdxTe as an example. The TPM in QD is greatest and the least for quantum wells respectively. The thecoretical results are in agreement with the experimental observations as reported elsewhere.
We shall study the thermoelectric power under classically large magnetic field (TPM) in optoelectronic materials of quantum wells (QWs), quantum well wires (QWW’s), quantum dots (QDs) and compare the same with the hulk specimens of optoelectronic materials by formulating the respective electron dispersion law. The TPM increases with decreasing electron concentration in an oscillatory manner in all the cases, taking n-Hg1-xC dxTe as an example. The TPM in QD is greatest and the least for quantum wells respectively. The theoretical results are in agreement with the experimental observations as reported elsewhere.
In this paper we studied the thermoelectric power under classically large magnetic field (TPM) in quantum wells (QWs), quantum well wires (QWWS) and quantum dots (QDs) of Bi by formulating the respective electron dispersion laws. The TPM increases with increasing film thickness in an oscillatory manner in all the cases. The TPM in QD is greatest and the least for quantum wells respectively. The theoretical results are in agreement with the experimental observations as reported elsewhere.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.