We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The COVID-19 pandemic led to changes in how healthcare was accessed and delivered. It was suggested that COVID-19 will lead to an increased delirium burden in its acute phase, with variable effect on mental health in the longer term. Despite this, there are limited data on the direct effects of the pandemic on psychiatric care.
Objectives
1) describe the mental health presentations of a diverse acute inpatient population, 2) compare findings with the same period in 2019, 3) characterise the SARS-CoV-2 positive cohort of patients.
Methods
We present a descriptive summary of the referrals to a UK psychiatric liaison department during the exponential phase of the pandemic, and compare this to the same period in 2019.
Results
show a 40.3% reduction in the number of referrals in 2020, with an increase in the proportion of referrals for delirium and psychosis. One third (28%) of referred patients tested positive for COVID-19 during their admission, with 39.7% of these presenting with delirium as a consequence of their COVID-19 illness. Our data indicate decreased clinical activity for our service during the pandemic’s peak. There was a marked increase in delirium, though in no other psychiatric presentations.
Conclusions
In preparation for further exponential rises in COVID-19 cases, we would expect seamless integration of liaison psychiatry teams in general hospital wards to optimise delirium management in patients with COVID-19. Further consideration should be given to adequate staffing of community and crisis mental health teams to safely manage the potentially increasing number of people reluctant to visit the emergency department.
The separation dynamics of a sphere released from the surface of a ramp into a hypersonic flow is investigated, focusing on the influence of the ramp boundary layer on the sphere behaviour. First, numerical simulations are conducted of a sphere interacting with an isolated high-speed boundary layer to determine the influence on the sphere force coefficients as the sphere diameter and wall-normal location are varied. It is found that the lift coefficient is strongly affected by the near-wall interactions, becoming increasingly negative as the ratio of the sphere radius to boundary-layer thickness, $r/\delta$, is decreased. These results are combined with force coefficients derived from simulations of the sphere interacting with the ramp-generated oblique shock to enable numerical predictions of the sphere trajectories for a $10^{\circ }$ ramp at Mach 6 (using a similar decoupled approach to Part 1 of this work). It is found that the three trajectory types of the inviscid situation – shock surfing, ejection followed by re-entrainment within the shock layer and direct entrainment – also characterize the sphere behaviour here. Their relative prevalence, however, is influenced by the sphere size: for smaller values of $r/\delta$, direct entrainment dominates because of the wall suction, while shock surfing and then ejection/re-entrainment become increasingly likely at larger values of $r/\delta$. Increasing the ramp angle and/or the free-stream Mach number reduces the relative influence of the boundary-layer interactions. Finally, experiments are conducted using free-flying spheres released from a ramp surface in a hypersonic shock tunnel, confirming the major trends predicted numerically.
Out of hours, there is only one on-site junior doctor. First year psychiatry trainees (CT1s) and GP trainees may have no prior experience in psychiatry. On-call shifts are therefore potentially daunting for new trainees.
Objectives
Expand the resources available for trainees when on-call.
Methods
We issued questionnaires to CT1s asking if they would have appreciated more information about on-call scenarios and in what format.
Based on the questionnaire results we implemented some changes. These were:
– a printed “pocket-guide” summarising common on-call scenarios;
– a training video on common on-call scenarios.
The handout was given to new trainees in February 2016 and in August 2016. The video was shown to new trainees in August 2016. Trainees provided feedback on the resources.
Results
Of 24 CT1s, 15 (63%) were “neutral” or “disagreed” that they had felt prepared for on-calls.
CT1s wanted additional resources, especially a paper handout or phone download.
Feedback on the “pocket-guide” from trainees in February 2016 (n = 8) was positive (62.5% reported increased confidence in on-call situations). Feedback is also being collected from trainees who received the guide in August 2016.
Trainees in August 2016 (n = 36) liked the video – no trainees “disagreed” with statements asking if the video had been useful.
The video improved the confidence of trainees about on-call situations by an average of 2.8 points.
Conclusions
We have expanded available resources relating to on-calls and improved confidence. Further improvements would include making resources more easily available in downloadable formats.
Disclosure of interest
The authors have not supplied their declaration of competing interest.
The COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) project is a large international collaborative effort to analyze individual-level phenotype data from twins in multiple cohorts from different environments. The main objective is to study factors that modify genetic and environmental variation of height, body mass index (BMI, kg/m2) and size at birth, and additionally to address other research questions such as long-term consequences of birth size. The project started in 2013 and is open to all twin projects in the world having height and weight measures on twins with information on zygosity. Thus far, 54 twin projects from 24 countries have provided individual-level data. The CODATwins database includes 489,981 twin individuals (228,635 complete twin pairs). Since many twin cohorts have collected longitudinal data, there is a total of 1,049,785 height and weight observations. For many cohorts, we also have information on birth weight and length, own smoking behavior and own or parental education. We found that the heritability estimates of height and BMI systematically changed from infancy to old age. Remarkably, only minor differences in the heritability estimates were found across cultural–geographic regions, measurement time and birth cohort for height and BMI. In addition to genetic epidemiological studies, we looked at associations of height and BMI with education, birth weight and smoking status. Within-family analyses examined differences within same-sex and opposite-sex dizygotic twins in birth size and later development. The CODATwins project demonstrates the feasibility and value of international collaboration to address gene-by-exposure interactions that require large sample sizes and address the effects of different exposures across time, geographical regions and socioeconomic status.
Although many studies on budgetary outcomes of state politics focus on budget sizes, budget trade-off studies focus on budget composition. This study examines the role of state politics in explaining budget trade-offs. We apply Peterson's typology to analyze budget trade-offs among developmental, allocational, redistributive, and educational expenditures. We focus on the roles of partisan and ideological factors and their interactive effects with institutional limits. Results show that politics matters. The Democratic Party and liberal citizen ideology increase state spending in redistribution relative to other categories, while the Republican Party shifts state budgets toward developmental spending. Partisan effects increase when tax and expenditure limits become less restrictive. Using more recent data and improved measurements, this study explains trade-offs among theoretically meaningful expenditure categories with a comprehensive model while providing a test of Peterson's typology.
Scholars have consistently shown that learning of successful policies in other states leads to higher likelihood of policy adoption. This study extends this finding two ways. First, policy learning can also lead to more comprehensive adoption of successful policies. Second, the effect of policy learning on policy comprehensiveness is conditional on lobbying by interest groups, an alternative source of information about policy success. To test these hypotheses, we conduct a directed dyad-year analysis using a dataset on American state drunk driving regulations from 1983 to 2000. The results show that more comprehensive policy adoption by states is positively related to policy success in other states when lobbying by Mothers Against Drunk Driving (MADD) is relatively low. Moreover, lobbying by MADD increases policy comprehensiveness when policy success is relatively low. This study advances the literature by examining the conditional effects of lobbying on the relationship between policy learning and policy reinvention.
Introduction: Situational awareness (SA) is essential for maintenance of scene safety and effective resource allocation in mass casualty incidents (MCI). Unmanned aerial vehicles (UAV) can potentially enhance SA with real-time visual feedback during chaotic and evolving or inaccessible events. The purpose of this study was to test the ability of paramedics to use UAV video from a simulated MCI to identify scene hazards, initiate patient triage, and designate key operational locations. Methods: A simulated MCI, including fifteen patients of varying acuity (blast type injuries), plus four hazards, was created on a college campus. The scene was surveyed by UAV capturing video of all patients, hazards, surrounding buildings and streets. Attendees of a provincial paramedic meeting were invited to participate. Participants received a lecture on SALT Triage and the principles of MCI scene management. Next, they watched the UAV video footage. Participants were directed to sort patients according to SALT Triage step one, identify injuries, and localize the patients within the campus. Additionally, they were asked to select a start point for SALT Triage step two, identify and locate hazards, and designate locations for an Incident Command Post, Treatment Area, Transport Area and Access/Egress routes. Summary statistics were performed and a linear regression model was used to assess relationships between demographic variables and both patient triage and localization. Results: Ninety-six individuals participated. Mean age was 35 years (SD 11), 46% (44) were female, and 49% (47) were Primary Care Paramedics. Most participants (80 (84%)) correctly sorted at least 12 of 15 patients. Increased age was associated with decreased triage accuracy [-0.04(-0.07,-0.01);p=0.031]. Fifty-two (54%) were able to localize 12 or more of the 15 patients to a 27x 20m grid area. Advanced paramedic certification, and local residency were associated with improved patient localization [2.47(0.23,4.72);p=0.031], [-3.36(-5.61,-1.1);p=0.004]. The majority of participants (78 (81%)) chose an acceptable location to start SALT triage step two and 84% (80) identified at least three of four hazards. Approximately half (53 (55%)) of participants designated four or more of five key operational areas in appropriate locations. Conclusion: This study demonstrates the potential of UAV technology to remotely provide emergency responders with SA in a MCI. Additional research is required to further investigate optimal strategies to deploy UAVs in this context.
The use of sexed semen in dairy and beef cattle production provides a number of benefits at both farm and industry levels. There is an increasing demand for dairy and beef products across the globe, which will necessitate a greater focus on improving production efficiency. In dairy farming, there is surplus production of unwanted male calves. Male dairy calves increase the risk of dystocia compared with heifer calves, and as an unwanted by-product of breeding with conventional semen, they have a low economic value. Incorporating sexed semen into the breeding programme can minimise the number of unwanted male dairy calves and reduce dystocia. Sexed semen can be used to generate herd replacements and additional heifers for herd expansion at a faster rate from within the herd, thereby minimising biosecurity risks associated with bringing in animals from different herds. Furthermore, the use of sexed semen can increase herd genetic gain compared with use of non-sorted semen. In dairy herds, a sustainable breeding strategy could combine usage of sexed semen to generate replacements only, and usage of beef semen on all dams that are not suitable for generating replacements. This results in increased genetic gain in dairy herd, increased value of beef output from the dairy herd, and reduced greenhouse gas emissions from beef. It is important to note, however, that even a small decrease in fertility of sexed semen relative to conventional semen can negate much of the economic benefit. A high fertility sexed semen product has the potential to accelerate herd expansion, minimise waste production, improve animal welfare and increase profitability compared with non-sorted conventional semen.
Phased VLA observations of the Galactic center magnetar J1745-2900 over 8-12 GHz reveal rich single pulse behavior. The average profile is comprised of several distinct components and is fairly stable over day timescales and GHz frequencies. The average profile is dominated by the jitter of relatively narrow pulses. The pulses in each of the four profile components are uncorrelated in phase and amplitude, although the occurrence of pulse components 1 and 2 appear to be correlated. Using a collection of the brightest individual pulses, we verify that the index of the dispersion law is consistent with the expected cold plasma value of 2. The scattering time is weakly constrained, but consistent with previous measurements, while the dispersion measure DM = 1763+3−10 pc cm−3 is lower than previous measurements, which could be a result of time variability in the line-of-sight column density or changing pulse profile shape over time or frequency.
A recently developed mechanistic mathematical model of the bovine estrous cycle was parameterized to fit empirical data sets collected during one estrous cycle of 31 individual cows, with the main objective to further validate the model. The a priori criteria for validation were (1) the resulting model can simulate the measured data correctly (i.e. goodness of fit), and (2) this is achieved without needing extreme, probably non-physiological parameter values. We used a least squares optimization procedure to identify parameter configurations for the mathematical model to fit the empirical in vivo measurements of follicle and corpus luteum sizes, and the plasma concentrations of progesterone, estradiol, FSH and LH for each cow. The model was capable of accommodating normal variation in estrous cycle characteristics of individual cows. With the parameter sets estimated for the individual cows, the model behavior changed for 21 cows, with improved fit of the simulated output curves for 18 of these 21 cows. Moreover, the number of follicular waves was predicted correctly for 18 of the 25 two-wave and three-wave cows, without extreme parameter value changes. Estimation of specific parameters confirmed results of previous model simulations indicating that parameters involved in luteolytic signaling are very important for regulation of general estrous cycle characteristics, and are likely responsible for differences in estrous cycle characteristics between cows.
The optimisation results for composite and metallic versions of a regional aircraft wing are compared using the multidisciplinary optimisation (MDO) program CALFUNOPT. The program has been developed for the conceptual design stage and models the wing using just 11 beam elements. The wing has been optimised for three combinations of the following constraint cases: static strength; aeroelastic roll efficiency (represented by limiting the twist of the wing for an aileron loading) and aeroelastic divergence. As expected, comparison shows that the composite wing designs are significantly lighter than the metallic ones, due to the well-known tailoring of the composite material. However, the simple model reveals some insight that may be useful to the designer, and which could be lost within a more detailed finite element approach.
The upper-skin compression panels produced by the conceptual MDO program, for both versions of the wing, have then been optimised using the more detailed and accurate panel sizing tool VICONOPT, which takes buckling into account. Such optimisation increases the panel mass by 5-10% and also provides a suitable ratio of stiffener to skin area for use in the conceptual MDO model.
Introduction: The chaotic environment of the emergency department has a deleterious effect on clinical judgement. The diagnosis of abdominal pathology is difficult to differentiate. There are also many diagnoses that could be considered abdominal in nature, exacerbating the task of diagnosing these patients. We propose a novel machine-learning method, Hierarchical Structured Models (HSMs), to provide an adjunct to clinician judgement, that provides a ranking of the probabilities of a patient having each of 39 abdominal pathologies, using only variables at the triage stage of emergency department care, and compare its performance to several machine-learning methods. Methods: This was a retrospective analysis of 25,861 patients that presented with one of 39 ICD-9 abdominal pathologies. 90% of the data was used to build and fine-tune the model, and 10% was used for testing. Predictors included age, gender, triage vitals and presenting complaint. All variables were solely collected from the Emergency Department Information System (EDIS). A decision tree structure was built using hierarchical clustering algorithms, and then a support vector machine (SVM) was fit at each node. To optimize the parameters for each node, a grid-search method was used to maximize ten-fold classification accuracy. The output of the decision tree was the probability of a particular presentation having each of the 39 diagnoses. This output was translated to a ranking of the relative likelihood of each of the diagnoses as a suggestion system for the treating physician. The accuracy of the system on the test set was compared to conventional machine-learning methods: pair-wise SVMs, gradient boosted models (GBM), neural networks (NN) and k-nearest neighbours (KNN). Results: The HSM ranked the correct diagnosis first 51.0% of the time, and ranked the correct diagnosis within the top three ranks 67.6% of the time. The most accurate model was GBMs (52.3%), and the least was neural networks (50.4%). Conclusion: The HSM approach using only variables available electronically at triage successfully ranked the correct diagnosis 51.0% of the time, and within the top three 67.6% of the time. Future research will focus on the inclusion of clinically lab results and radiology reports that are available electronically to improve HSM accuracy, and supplement physician diagnosis.
There is an increasing interest in pasture-based dairy systems in Europe, mainly because of increasing production costs for intensive dairying. Milk is a matrix of compounds that influence nutritional and manufacturing properties, many dependent on husbandry linked to pasture-based systems (increase in pasture intake, forage : concentrate ratio, clover inclusion in swards/silages and use of alternative dairy breeds). The present study investigated the impact of three grazing-based dairy systems with contrasting feeding intensity or reliance on pasture intakes (conventional high-intensity, low pasture intake [CH], organic medium-intensity, medium pasture intake [OM], conventional low-intensity, high pasture intake [CL]) on milk fatty acid (FA) profiles, protein composition and α-tocopherol and antioxidants concentrations. The proportion of animals of alternative breeds (e.g. Jersey) and crossbred cows in the herd increased with decreasing production intensity (CH < OM < CL). Milk constituents known to be beneficial for human health, such as vaccenic acid, rumenic acid, monounsaturated FA, polyunsaturated FA, antioxidants and caseins, were elevated with decreasing production intensity (CH < OM < CL), while less desirable saturated FA were lower, although not all differences between OM and CL were significant. Omega-3 FA were maximized under OM practices, primarily as a result of higher clover intake. Increases in pasture intake may explain the higher concentrations of desirable FA while increased use of crossbreed cows is likely to be responsible for higher total protein and casein content of milk; a combination of these two factors may explain increased antioxidant levels. The higher concentrations of vaccenic acid, rumenic acid, omega-3 FA, lutein, zeaxanthin, protein and casein in OM and CL milk were found over most sampling months and in both years, reinforcing the higher nutritional quality and manufacturing properties associated with milk from these systems. A switch to pasture-based dairy products would increase the intake of milk's beneficial compounds and reduce consumption of less desirable saturated FA.
The objective of this study was to identify detailed fertility traits in dairy and beef cattle from transrectal ultrasonography records and quantify the associated risk factors. Data were available on 148 947 ultrasound observations of the reproductive tract from 75 949 cows in 843 Irish dairy and beef herds between March 2008 and October 2012. Traits generated included (1) cycling at time of examination, (2) cystic structures, (3) early ovulation, (4) embryo death and (5) uterine score; the latter was measured on a scale of 1 (good) to 4 (poor) characterising the tone of the uterine wall and fluid present in the uterus. After editing, 72 773 records from 44 415 dairy and beef cows in 643 herds remained. Factors associated with the logit of the probability of a positive outcome for each of the binary fertility traits were determined using generalised estimating equations; linear mixed model analysis was used for the analysis of uterine score. The prevalence of cycling, cystic structures, early ovulation and embryo death was 84.75%, 3.87%, 7.47% and 3.84%, respectively. The occurrence of the uterine heath score of 1, 2, 3 and 4 was 70.63%, 19.75%, 8.36% and 1.26%, respectively. Cows in beef herds had a 0.51 odds (95% CI=0.41 to 0.63, P<0.001) of cycling at the time of examination compared with cows in dairy herds; stage of lactation at the time of examination was the same in both herd types. Furthermore, cows in dairy herds had an inferior uterine score (indicating poorer tone and a greater quantity of uterine fluid present) compared with cows in beef herds. The likelihood of cycling at the time of examination increased with parity and stage of lactation, but was reduced in cows that had experienced dystocia in the previous calving. The presence of cystic structures on the ovaries increased with parity and stage of lactation. The likelihood of embryo/foetal death increased with parity and stage of lactation. Dystocia was not associated with the presence of cystic structures or embryo death. Uterine score improved with parity and stage of lactation, while cows that experienced dystocia in the previous calving had an inferior uterine score. Heterosis was the only factor associated with increased likelihood of early ovulation. The fertility traits identified, and the associated risk factors, provide useful information on the reproductive status of dairy and beef cows.
The efficiency of milk production in pasture-based systems is heavily influenced by calving pattern, necessitating excellent reproductive performance in a short-breeding season. Where grazed pasture is the major component of the diet, cows are underfed relative to their intake potential. The cow responds by reducing milk output, but fertility is generally better than high intake confinement systems that achieve greater milk production per cow. A number of studies have identified body condition score (BCS) measurements that are related to likelihood of both submission and conception. Blood metabolites and metabolic hormones linked to fertility outcomes are now well characterized. In general, fertility variables have favourable associations with circulating concentrations of glucose, insulin and IGF-1 and unfavourable associations with non-esterified fatty acids, β-hydroxybutyrate and endogenous growth hormone. Nutritional strategies to impact these metabolic indicators have been utilized, but effects on herd fertility are inconsistent. Simply supplementing cows with additional energy in the form of standard concentrates does not appear to have a pronounced effect on fertility. Energy from additional concentrates fed during lactation is preferentially partitioned towards extra milk production rather than BCS repletion. The higher the genetic merit for milk production, the greater the partitioning of additional nutrients to the mammary gland. This review outlines the unique nutritional challenges of pasture-based systems, the role of specific metabolic hormones and metabolites in regulating reproductive function, and nutritional strategies to improve herd fertility.
Milk and milk solids production per cow is increasing annually in dairy systems. Peak milk production is in early lactation when the uterus and ovary are recovering from the previous pregnancy. The competing processes of milk production and restoration of reproductive function can be at odds, particularly if unique homeorhetic mechanisms that typify early lactation become imbalanced and cows experience metabolic disease. Homeorhesis leads to an increase in the synthesis of glucose that is irreversibly lost to milk lactose. Irreversible loss of glucose during lactation can invoke an endocrine and metabolic state that impinges upon postpartum uterine health, oestrous cyclicity and subsequent establishment of pregnancy. The first 30 days postpartum may be most critical in terms of the impact that metabolites and metabolic hormones have on reproduction. Depressed immune function caused in part by the postpartum metabolic profile leads to a failure in uterine involution and uterine disease. Oestrous cyclicity (interval to first ovulation and subsequent periodicity) is affected by the same hormones and metabolites that control postpartum immune function. Slower growth of the embryo or foetus perhaps explained by the unique metabolic profile during lactation may predispose cows to pregnancy loss. Understanding homeorhetic mechanisms that involve glucose and collectively affect postpartum uterine health, oestrous cyclicity and the establishment of pregnancy should lead to methods to improve postpartum fertility in dairy cows.
Sexed semen technology is now commercially available in many countries around the world, and is primarily used in dairy cattle breeding. Sperm are sorted by flow cytometry on the basis of a 4% difference in DNA content between sperm containing X and Y chromosomes. Despite reliably producing a 90% gender bias, the fertility of the sexed semen product is compromised compared with conventional semen. The negative implications of the reduced fertility of sexed semen are amplified in seasonal systems of dairy production, as the importance of fertility is greater in these systems compared with year-round calving systems. A review of the literature indicates that conception rates (CR) to 1st service with frozen-thawed sexed semen are ~75% to 80% of those achieved with conventional frozen-thawed semen. Preliminary results from a large-scale field trial carried out in Ireland in 2013 suggest that significant improvements in the performance of sexed semen have been made, with CR of 87% of those achieved with conventional semen. The improved fertility of a sexed semen product that delivers a 90% gender bias has considerable implications for the future of breeding management in pasture-based dairy production systems. Sexed semen may facilitate faster, more profitable dairy herd expansion by increasing the number of dairy heifer replacements born. Biosecurity can be improved by maintaining a closed herd during the period of herd expansion. In a non-expansion scenario, sexed semen may be used to increase the value of beef output from the dairy herd. The replacement heifer requirements for a herd could be met by using sexed semen in the 1st 3 weeks of the breeding season, with the remaining animals bred to beef sires, increasing the sale value over that of a dairy bull calf. Alternatively, very short gestation sires could be used to shorten the calving interval. Market prices have a considerable effect on the economics of sexed semen use, and widespread use of sexed semen should be restricted to well managed herds that already achieve acceptable herd fertility performance.
Although usually thought of as external environmental stressors, a significant heritable component has been reported for measures of stressful life events (SLEs) in twin studies.
Method
We examined the variance in SLEs captured by common genetic variants from a genome-wide association study (GWAS) of 2578 individuals. Genome-wide complex trait analysis (GCTA) was used to estimate the phenotypic variance tagged by single nucleotide polymorphisms (SNPs). We also performed a GWAS on the number of SLEs, and looked at correlations between siblings.
Results
A significant proportion of variance in SLEs was captured by SNPs (30%, p = 0.04). When events were divided into those considered to be dependent or independent, an equal amount of variance was explained for both. This ‘heritability’ was in part confounded by personality measures of neuroticism and psychoticism. A GWAS for the total number of SLEs revealed one SNP that reached genome-wide significance (p = 4 × 10−8), although this association was not replicated in separate samples. Using available sibling data for 744 individuals, we also found a significant positive correlation of R2 = 0.08 in SLEs (p = 0.03).
Conclusions
These results provide independent validation from molecular data for the heritability of reporting environmental measures, and show that this heritability is in part due to both common variants and the confounding effect of personality.
Continental shelf ecosystems have high importance for the continental countries of the Wider Caribbean Region. They support important shrimp and groundfish fisheries (Phillips et al. Chapter 15) and snapper fisheries on their outer slopes (Heileman Chapter 13). There are also important linkages between the former fisheries and the many coastal and estuarine lagoons and wetlands that occur in these countries (Yáñez-Arancibia et al. Chapter 17). They support livelihoods (McConney and Salas Chapter 7) and provide critical ecosystem services (Schuhmann et al. Chapter 8). Continental shelf ecosystems have been degraded by many human impacts of both marine and land-based origin (Sweeney and Corbin Chapter 4; Gil and Wells Chapter 5).
This synthesis chapter presents the outputs of a group process aimed at developing a vision and way ahead for ecosystem based management (EBM) for continental shelf ecosystems in the Wider Caribbean, using the methods described earlier (Fanning et al. Chapter 1). In terms of structure, the chapter first describes a vision for continental shelf EBM and reports on the priorities assigned to the identified vision elements. It then discusses how the vision might be achieved by taking into account assisting factors (those that facilitate achievement) and resisting factors (those that inhibit achievement). The chapter concludes with guidance on the strategic direction needed to implement the vision, identifying specific actions to be undertaken for each of the vision elements.
The vision
The occupational breakdown of members of the Continental Shelf Ecosystems Working Group reflected the diversity of affiliations present at the EBM Symposium and included governmental, intergovernmental, academic, non-governmental and private sector (fishers and fishing industry and consulting) representatives. With guidance provided by the facilitator, this diverse group of participants was asked to first address the question of “What do you see in place in 10 years time when EBM/EAF has become a reality in the Caribbean?” This diversity provided for a fruitful and comprehensive discussion which is summarized in Table 24.1, in terms of the key vision elements and their subcomponents, and in Figure 24.1, which illustrates the level of priority assigned to each of the vision elements.
Over a period of 10 years, 1964–74, primary production has been measured at three stations across the western English Channel using the 14C method. Results for carbon fixation, cell counts and mean seasonal production are illustrated. Statistical analyses show that, at two of the three stations, carbon fixation in 1966 was significantly greater than expected and that annual production differs significantly at each of the stations. The variations observed are discussed in relation to other changes recorded in the area during the same period. A deck incubator used for simulated in situ14C experiments is illustrated.