We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Japan, three trematode species of the genus Azygia have been recorded: A. gotoi, A. perryii, and A. rhinogobii. Here, we report the first detection of A. hwangtsiyui in Japan, identified from the introduced snakehead Channa argus. This trematode was previously known only from the snakeheads in mainland China. Between 2015 and 2024, we sampled snakeheads and snails in Japan, collecting adult trematodes and rediae. Adult trematodes were identified morphologically as A. hwangtsiyui, a determination corroborated by molecular analyses of the COI and 28S rDNA regions. Rediae extracted from the snail Sinotaia quadrata histrica were also identified molecularly as A. hwangtsiyui, indicating the snail acts as an intermediate host. Juvenile trematodes from the short-spined Japanese trident goby Tridentiger brevispinis were also morphologically identified as A. hwangtsiyui, indicating that this goby acts as a paratenic host. Given the snakehead’s introduction to Japan between 1923 and 1924, the absence of records of later introductions, and the presence of both intermediate and paratenic hosts in Japan at that time, A. hwangtsiyui was likely introduced concurrently with the snakehead. As the detection of three COI haplotypes suggests multiple introductions, subsequent introductions via the aquarium trade or other pathways involving the transport of freshwater fish and mollusks from Asia to Japan are also plausible.
During 2021 through 2023, the golden mussel Limnoperna fortunei and freshwater fishes were sampled from 28 sites in the Tone River system, Japan, and adult trematodes of Dollfustrema were found in the fishes. Molecular and morphological analyses based on 28S rDNA and the ITS1−5.8S−ITS2 region revealed the trematode as ‘Dollfustrema hefeiense’, previously reported in Mainland China and likely introduced to Japan. Given that its scientific name was considered invalid, we re-described the species as Dollfustrema invadens n. sp. Additionally, the DNA-based survey helped clarify the trematode’s life cycle in the river system. A sporocyst and metacercariae were detected in the golden mussel’s visceral mass and in the muscles of two small freshwater fish species, respectively. The channel catfish Ictalurus punctatus harboured mature trematodes in its intestine, and adult trematodes were also found in the muscles of fishes infected with metacercariae, suggesting direct metacercariae development in fish muscle. Furthermore, another introduced bucephalid trematode, Prosorhynchoides ozakii, previously reported in the river system, was detected in the mussels and fishes. Moreover, co-infection of both bucephalid trematodes was observed in certain fishes.
Poiseuille flow is a fundamental flow in fluid mechanics and is driven by a pressure gradient in a channel. Although the rheology of active particle suspensions has been investigated extensively, knowledge of the Poiseuille flow of such suspensions is lacking. In this study, dynamic simulations of a suspension of active particles in Poiseuille flow, situated between two parallel walls, were conducted by Stokesian dynamics assuming negligible inertia. Active particles were modelled as spherical squirmers. In the case of inert spheres in Poiseuille flow, the distribution of spheres between the walls was layered. In the case of non-bottom-heavy squirmers, on the other hand, the layers collapsed and the distribution became more uniform. This led to a much larger pressure drop for the squirmers than for the inert spheres. The effects of volume fraction, swimming mode, swimming speed and the wall separation on the pressure drop were investigated. When the squirmers were bottom heavy, they accumulated at the channel centre in downflow, whereas they accumulated near the walls in upflow, as observed in former experiments. The difference in squirmer configuration alters the hydrodynamic force on the wall and hence the pressure drop and effective viscosity. In upflow, pusher squirmers induced a considerably larger pressure drop, while neutral and puller squirmers could even generate negative pressure drops, i.e. spontaneous flow could occur. While previous studies have reported negative viscosity of pusher suspensions, this study shows that the effective viscosity of bottom-heavy puller suspensions can be negative for Poiseuille upflow, which is a new finding. The knowledge obtained is important for understanding channel flow of active suspensions.
Fat plays an important role in brain function; 60% of the brain’s dry weight is fat. Among fats, omega-3 fatty acids, which are long-chain fatty acids, have been reported to reduce depressive symptoms. On the other hand, there are few studies on short-chain fatty acids (SCFAs), and those that do exist are mostly animal studies, with only a few human studies (about 100 cases). This is the first study to examine the association between fecal short-chain fatty acids and depressive symptoms on a large scale in the general population.
Objectives
We examined the association of fecal SCFAs with depressive symptoms. In addition, we analyzed the associations stratified by age and examined differences in the associations.
Methods
This study was conducted using data from the Dynamics of Lifestyle and Neighborhood Community on Health Study (DOSANCO Health Study). The target population was all residents of the city of Suttu, Hokkaido, Japan, excluding residents of special nursing homes (n=2638). 579 individuals (22% of the target population) aged 18 years and older who were able to measure fecal SCFA participated in this study with written informed consent. Approval was obtained from the Ethics Committee of Hokkaido University School of Medicine (15-002 and 15-045). Fecal SCFA was measured by high-performance liquid chromatography. We examined the association of fecal concentrations of SCFA subtypes (i.e., acetate, butyrate, and propionate) and total SCFA concentrations (mg/g wet weight as a continuous variable) with total Patient Health Questionnaire-9 (PHQ-9) scores using multiple regression analysis. We adjusted for age, sex, habitual exercise, total energy intake, and total dietary fiber intake. We performed additional multiple regression analyses with stratification by age group (18-59 years and 60 years or older). Two-tailed tests were used for all analyses with a significance level of P < 0.05.
Results
The mean age (standard deviation) of the study participants (n=534) was 58.3 (16.0) years. Among them, 48% were 18-59 years old and 54% were female. Fecal propionate concentration was significantly associated with total PHQ-9 score (beta=0.62, p<0.01). Other SCFAs and total SCFA were not significantly associated with total PHQ-9 score. In addition, using stratification analyses by age group, the associations between fecal propionate concentration and total PHQ-9 score showed a different trend by age group (beta=0.18, p=0.62 for 18-59 years; beta=0.80, p<0.01 for 60 years or older).
Conclusions
The study showed an association between higher concentrations of fecal propionic acid and higher levels of depressive symptoms. The association was particularly pronounced in older people, those aged 60 years and older. The results suggest that improving dietary habits to reduce fecal propionic acid may be effective in preventing depression in the elderly.
Disclosure of Interest
R. Okubo Shareolder of: None, Grant / Research support from: A Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science (No. 22K17844), Consultant of: None, Employee of: None, Paid Instructor of: None, Speakers bureau of: Speakers bureau from Takeda Pharmaceutical Company Limited, R. Yamamura: None Declared, S. Ishikawa: None Declared, T. Kimura: None Declared, S. Ukawa: None Declared, K. Nakamura: None Declared, A. Tamakoshi: None Declared
Rats are known to be relatively resistant to infection with Echinococcus multilocularis. However, when rats are inoculated with the parasite tissues, E. multilocularis proliferates slowly at first but after 6 months the cysts increase in size considerably and contain large numbers of protoscoleces. As rats survive for 18 months or longer, approximately 100 ml of packed protoscoleces can be produced from each rat. A comparison of the antigenicity of the protoscoleces and microvesicles by immunoblot methods showed that both Em18 and Em16 are shared components between both protoscoleces and microvesicles, although the latter have some additional antigenic components. In antigens prepared from protoscoleces, the banding patterns around Em18 were much simpler than those from microvesicles. Therefore, for serodiagnosis of E. multilocularis, antigens should be carefully prepared from protoscoleces rather than microvesicles from the rat.
While paediatric arteriovenous malformations (AVMs) often require aggressive therapeutic intervention due to their high bleeding incidence, choosing a course of treatment for deep and eloquent areas and asymptomatic cases is difficult. Sequelae are a concern in children, as they survive for longer after treatment. The authors have long recommended and implemented staged Gamma Knife radiosurgery (GKRS) in their treatment guidelines to maximise therapeutic effects.
Methods:
Fifty-eight paediatric patients with AVM and ≤15 years old who underwent GKRS under general anesthesia from 2002 to 2020 were followed up for an average of 81·5 months. Obliteration dynamics and clinical outcomes were analysed.
Results:
The mean patient age was 10·5 years. The mean nidus volume was 6·6 cm3, the complete occlusion rate was 69%, the annual post-irradiation bleeding rate was 2·19% and nine (16%) cases had transient radiation-induced changes. One (1·7%) patient had sequela, and three (5·1%) developed encapsulated hematomas and cysts. Additionally, the 3- and 5-year cumulative occlusion rates were 39·0% and 53·3%, respectively. Multivariate analysis showed significantly higher occlusion rates in patients ≤12 years old and with a nidus volume of ≤4 cm3.
Conclusions:
GKRS is a useful treatment for paediatric AVM; however, its use poses some challenges.
Asiatic black bears (Ursus thibetanus) face chronic stress in bile farms. In this study, we investigated whether bile-farmed bears show significantly high levels of stress at rescue and whether stress levels reduce over time in a bear sanctuary where the bears are supported with environmental enrichment and veterinary care to improve animal welfare. We measured stress hormone levels using faecal cortisol metabolites (FCM) in 16 Asiatic black bears freshly rescued from bile farms in Vietnam. Fresh faeces were collected from each bear on the rescue truck and on a weekly basis for a 22-week study period at a bear sanctuary in Vietnam. Results showed that for all 16 rescued bears (with one exception) individual FCM levels from truck samples were above mean baseline FCMs of bears previously rehabilitated to a bear sanctuary. This suggested the majority of the rescued bears were still capable of showing a stress endocrine response during the rescue operation despite being exposed to conditions causing chronic stress in bears on bile farms. Results showed that mean FCM levels of the rescued bears differed significantly between time-periods (higher at the rescue [on truck samples] compared to week 22 samples) and mean FCM levels showed an overall decline over the first 22 weeks after they arrived at the bear sanctuary. The bears also demonstrated acute FCM stress responses to management interventions at the sanctuary, such as veterinary health checks and transportation. In conclusion, rescued bears tend to modulate their stress endocrine response after rehoming at the bear sanctuary. This is an important result, indicating that the rescue effort and rehabilitation of bile-farm bears is effective. Whether this also coincides with behavioural adjustments in rehabilitating bears (eg lessening of stereotypic behaviour) warrants further investigation.
Rheotaxis and migration of cells in a flow field have been investigated intensively owing to their importance in biology, physiology and engineering. In this study, first, we report our experiments showing that the microalgae Chlamydomonas can orient against the channel flow and migrate to the channel centre. Second, by performing boundary element simulations, we demonstrate that the mechanism of the observed rheotaxis and migration has a physical origin. Last, using a simple analytical model, we reveal the novel physical mechanisms of rheotaxis and migration, specifically the interplay between cyclic body deformation and cyclic swimming velocity in the channel flow. The discovered mechanism can be as important as phototaxis and gravitaxis, and likely plays a role in the movement of other natural microswimmers and artificial microrobots with non-reciprocal body deformation.
The Global Yield Gap Atlas (GYGA) is an international project that addresses global food production capacity in the form of yield gaps (Yg). The GYGA project is unique in employing its original Climate Zonation Scheme (CZS) composed of three indexed factors, i.e. Growing Degree Days (GDD) related to temperature, Aridity Index (AI) related to available water and Temperature Seasonality (TS) related to annual temperature range, creating 300 Climate Zones (CZs) theoretically across the globe. In the present study, the GYGA CZs were identified for Japan on a municipality basis and analysis of variance (ANOVA) was performed on irrigated rice yield data sets, equating to actual yields (Ya) in the GYGA context, from long-term government statistics. The ANOVA was conducted for the data sets over two decades between 1994 and 2016 by assigning the GDD score of 6 levels and the TS score of 2 levels as fixed factors. Significant interactions with respect to Ya were observed between GDD score and TS score for 13 years out of 21 years implying the existence of favourable combinations of the GDD score and the TS score for rice cultivation. The implication was also supported by the observation with Yg. The lower values of coefficient of variance obtained from the CZs characterized by medium GDD scores indicated the stability over time of rice yields in these areas. These findings suggest a possibility that the GYGA-CZS can be recognized as a tool suitable to identify favourable CZs for growing crops.
A concentrated, vertical monolayer of identical spherical squirmers, which may be bottom heavy, and which are subjected to a linear shear flow, is modelled computationally by two different methods: Stokesian dynamics, and a lubrication-theory-based method. Inertia is negligible. The aim is to compute the effective shear viscosity and, where possible, the normal stress differences as functions of the areal fraction of spheres $\phi$, the squirming parameter $\beta$ (proportional to the ratio of a squirmer's active stresslet to its swimming speed), the ratio $Sq$ of swimming speed to a typical speed of the shear flow, the bottom-heaviness parameter $G_{bh}$, the angle $\alpha$ that the shear flow makes with the horizontal and two parameters that define the repulsive force that is required computationally to prevent the squirmers from overlapping when their distance apart is less than a critical value. The Stokesian dynamics method allows the rheological quantities to be computed for values of $\phi$ up to $0.75$; the lubrication-theory method can be used for $\phi > 0.5$. For non-bottom-heavy squirmers, which are unaffected by gravity, the effective shear viscosity is found to increase more rapidly with $\phi$ than for inert spheres, whether the squirmers are pullers ($\beta > 0$) or pushers ($\beta < 0$); it also varies with $\beta$, although not by very much. However, for bottom-heavy squirmers the behaviour for pullers and pushers as $G_{bh}$ and $\alpha$ are varied is very different, since the viscosity can fall even below that of the suspending fluid for pushers at high $G_{bh}$. The normal stress differences, which are small for inert spheres, can become very large for bottom-heavy squirmers, increasing with $\beta$, and varying dramatically as the orientation $\alpha$ of the flow is varied from 0 to ${\rm \pi} /2$. A major finding is that, despite very different assumptions, the two methods of computation give overlapping results for viscosity as a function of $\phi$ in the range $0.5 < \phi < 0.75$. This suggests that lubrication theory, based on near-field interactions alone, contains most of the relevant physics, and that taking account of interactions with more distant particles than the nearest is not essential to describe the dominant physics.
Biflagellate algal cells of the genus Volvox form spherical colonies that propel themselves, vertically upwards in still fluid, by the coordinated beating of thousands of flagella, that also cause the colonies to rotate about their vertical axes. When they are swimming in a chamber of finite depth, pairs (or more) of Volvox carteri colonies were observed by Drescher et al. (Phys. Rev. Lett., vol. 102, 2009, 168101) to exhibit hydrodynamic bound states when they are close to a rigid horizontal boundary. When the boundary is above, the colonies are attracted to each other and orbit around each other in a ‘waltz’; when the boundary is below they perform more complex ‘minuet’ motions. These dances are simulated in the present paper, using a novel ‘spherical squirmer’ model of a colony in which, instead of a time-independent but $\theta$-dependent tangential velocity being imposed on the spherical surface (radius $a$; $\theta$ is the polar angle), a time-independent and uniform tangential shear stress is applied to the fluid on a sphere of radius $(1+\epsilon )a, \epsilon \ll 1$, where $\epsilon a$ represents the length of the flagella. The fluid must satisfy the no-slip condition on the sphere at radius $a$. In addition to the shear stress, the motions depend on two dimensionless parameters that describe the effect of gravity on a colony: $F_g$, proportional to the ratio of the sedimentation speed of a non-swimming colony to its swimming speed, and $G_{bh}$, that represents the fact that colonies are bottom heavy; $G_{bh}$ is the ratio of the time scale to swim a distance equal to the radius, to the time scale for gravitational reorientation of the colony's axis to the vertical when it is disturbed. In addition to reproducing both of the dancing modes, the simulations are able to determine values of $F_g$ and $G_{bh}$ for which they are stable (or not); there is reasonable agreement with the experiments. A far-field model for the minuet motions is also shown to have qualitative agreement, but does not describe some features that are reproduced in the full simulations.
We report the investigation on the properties of a novel Te precursor (i-C3H7)2Te and its effectiveness in fabricating MoTe2. The vapor pressure of the precursor was obtained by measuring the pressure as a function of its temperature in a sealed chamber. As a result it showed a high vapor pressure of 552.1 Pa at room temperature. The decomposition of the precursor was also investigated using DFT calculation. It was shown that the most likely reaction during the course of the decomposition of (i-C3H7)2Te is (i-C3H7)2Te → H2Te + 2 C3H7. The effectiveness of the precursor on the fabrication of MoTe2 was also investigated. Sputter-deposited MoO3 was tellurized in a quartz-tube furnace at the temperature up to 440°C. The resulting film showed that the 80% of the original MoO3 was tellurized to form MoTe2. It was also shown that further optimization of tellurization is required in order to prevent formation of metal Mo and elemental Te.
The Baltic Sea is a semi-enclosed brackish water basin where sea ice occurs annually. The sea-ice study discussed here was conducted as a Finnish-Japanese cooperative research programme entitled "Ice Climatology of the Okhotsk and Baltic Seas’’ to investigate the structure and properties of the brackish ice in the Baltic Sea. Ice, snow and water samples were collected at Santala Bay, near the mouth of the Gulf of Finland, once a week from 20 January to 12 April 1999. The salinity and oxygen isotopic composition (δ18O) of the samples were measured. The ice samples were analyzed stratigraphically. The ice was composed of a granular upper layer, occupying approximately one-third of the entire ice thickness, and underlying columnar ice toward the bottom. The crystallography structure and δ18O values reveal that the granular ice consisted of two layers with different origins, i.e. snow ice and superimposed ice. The fraction of snow relative to the total thickness was estimated. The limited data show a significant contribution of the snow cover to the sea-ice development. The salinity of the granular ice was higher than that of the columnar ice, implying that the mechanism of entrapment of brine may be different between the two ice types.
We report the synthesis of MoS2(1-x)Te2x by co-sputtering deposition and effect of mixture on its bandgap. The deposition was carried out at room temperature, and the sputtering power on individual MoS2 and MoTe2 targets were varied to obtain films with different compositions. Investigation with X-ray photoelectron spectroscopy confirmed the formation of Mo-Te and Mo-S bonds after post-deposition annealing (PDA), and one of the samples exhibited composition ratio of Mo:S:Te = 1:1.2:0.8 and 1:1.9:0.1 achieving 1:2 ratio of metal to chalcogen. Bandgap of MoS1.2Te0.8 and MoS1.9Te0.1 was evaluated with Tauc plot analysis from the extinction coefficient obtained by spectroscopic ellipsometry measurements. The obtained bandgaps were 1.0 eV and 1.3 eV. The resulting bandgap was lower than that of bulk MoS2 and higher than that of bulk MoTe2 suggesting mixture of both materials was achieved by co-sputtering.
Molybdenum disulfide (MoS2) thin films were fabricated by two-step chemical vapor deposition (CVD) using (t-C4H9)2S2 and the effects of temperature, gas flow rate, and atmosphere on the formation were investigated in order to achieve high-speed low-temperature MoS2 film formation. From the results of X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) investigations, it was confirmed that c-axis orientation of the pre-deposited Mo film has a significant involvement in the crystal orientation after the reaction low temperature sulfurization annealing and we successfully obtained 3 nm c-axis oriented MoS2 thin film. From the S/Mo ratios in the films, it was revealed that the sulfurization reaction proceeds faster with increase in the sulfurization temperature and the gas flow rate. Moreover, the sulfurization under the H2 atmosphere promotes decomposition reaction of (t-C4H9)2S2, which were confirmed by XPS and density functional theory (DFT) simulation.
The reorientation phenomenon of a single red blood cell during sedimentation is simulated using the boundary element method. The cell settles downwards due to a density difference between the internal and external fluids, and it changes orientation toward a vertical orientation regardless of Bond number or viscosity ratio. The reorientation phenomenon is explained by a shape asymmetry caused by the gravitational driving force, and the shape asymmetry increases almost linearly with the Bond number. When velocities are normalised by the driving force, settling/drifting velocities are weak functions of the Bond number and the viscosity ratio, while the angular velocity of the reorientation drastically changes with these parameters: the angular velocity is smaller for lower Bond number or higher viscosity ratio. As a consequence, trajectories of the sedimentation are also affected by the angular velocity, and blood cells with slower reorientation travel longer distances in the drifting direction. We also explain the mechanism of the reorientation using an asymmetric dumbbell. From the analysis, we show that the magnitude of the angular velocity is explained by two main factors: the shape asymmetry and the instantaneous orientation angle.