We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish Trudinger-type inequalities for variable Riesz potentials $J_{\alpha (\cdot ), \tau }f$ of functions in Musielak–Orlicz spaces $L^{\Phi }(X)$ over bounded metric measure spaces X equipped with lower Ahlfors $Q(x)$-regular measures under conditions on $\Phi $ which are weaker than conditions in the previous paper (Houston J. Math. 48 (2022), no. 3, 479–497). We also deal with the case $\Phi $ is the double phase functional with variable exponents. As an application, Trudinger-type inequalities are discussed for Sobolev functions.
We give Trudinger-type inequalities for Riesz potentials of functions in Orlicz-Morrey spaces of an integral form over non-doubling metric measure spaces. Our results are new even for the doubling metric measure setting. In particular, our results improve and extend the previous results in Morrey spaces of an integral form in the Euclidean case.
Our aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $J_{\unicode[STIX]{x1D6FC}(\cdot )}^{\unicode[STIX]{x1D70E}}f$ of functions $f$ in Musielak–Orlicz–Morrey spaces $L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705}}(X)$. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.
Our aim in this paper is to establish a generalization of Sobolev’s inequality for Riesz potentials $I_{\unicode[STIX]{x1D6FC}(\,\cdot \,),\unicode[STIX]{x1D70F}}f$ of order $\unicode[STIX]{x1D6FC}(\,\cdot \,)$ with $f\in L^{\unicode[STIX]{x1D6F7},\unicode[STIX]{x1D705},\unicode[STIX]{x1D703}}(X)$ over bounded non-doubling metric measure spaces. As a corollary we obtain Sobolev’s inequality for double phase functionals with variable exponents.
Our aim in this paper is to deal with integrability of maximal functions for Herz–Morrey spaces on the unit ball with variable exponent $p_{1}(\cdot )$ approaching $1$ and for double phase functionals $\unicode[STIX]{x1D6F7}_{d}(x,t)=t^{p_{1}(x)}+a(x)t^{p_{2}}$, where $a(x)^{1/p_{2}}$ is nonnegative, bounded and Hölder continuous of order $\unicode[STIX]{x1D703}\in (0,1]$ and $1/p_{2}=1-\unicode[STIX]{x1D703}/N>0$. We also establish Sobolev type inequality for Riesz potentials on the unit ball.
Our aim in this paper is to deal with Sobolev inequalities for Riesz potentials of functions in Lebesgue spaces of variable exponents near Sobolev’s exponent over nondoubling metric measure spaces.
This study examined whether the occurrence of late neck metastasis in early tongue squamous cell carcinoma can be predicted by evaluating HMGB1 (high mobility group box 1) expression in the primary lesion.
Methods:
A case–control study was conducted. The cases comprised 10 patients with late neck metastasis. The controls consisted of 16 patients without recurrence. All were examined immunohistochemically for HMGB1 protein expression. The odds ratio for late neck metastasis in relation to HMGB1 was estimated.
Results:
Results for HMGB1 were dichotomised into positive staining scores (score, 5–7) and negative scores (0–4). Six cases (60 per cent) and four controls (25 per cent) were HMGB1-positive. Although no significant result was seen, compared with HMGB1-negative patients the odds ratio for late neck metastasis in HMGB1-positive patients was 3.8 (95 per cent confidence interval, 0.6–26.5) after adjusting for other factors.
Conclusion:
In the present study, immunohistochemical study of HMGB1 in early tongue squamous cell carcinoma did not appear to be very useful for predicting occult neck metastasis. Further study is necessary to clarify the relationship between HMGB1 expression and late neck metastasis in early tongue squamous cell carcinoma.
Our aim in this paper is to deal with Sobolev's embeddings for Sobolev–Orlicz functions with ∇u ∈ Lp(·) logLq(·)(Ω) for Ω ⊂ n. Here p and q are variable exponents satisfying natural continuity conditions. Also the case when p attains the value 1 in some parts of the domain is included in the results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.