We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
A type of signal-interference fourth-order dual-band bandpass filter (BPF) with multiple out-of-band transmission zeros (TZs) is reported. A second-order dual-band BPF block is firstly discussed, which is composed of two microstrip-to-slotline vertical transitions that are back-to-back connected by means of an in-parallel asymmetrical microstrip-line-based closed loop. It exhibits spectrally symmetrical passbands regarding the design frequency fD and three TZs at the inter-band region. Subsequently, by using stepped-impedance-line segments at the longest path of the transversal signal-interference closed loop, its dual-band BPF counterpart with second-order spectrally asymmetrical dual passbands is presented. Next, in order to increase the filter order as well as the number of out-of-band TZs for augmented stopband attenuation, a fourth-order dual-band BPF circuit is conceived. To this aim, two Y-shaped stepped-impedance microstrip stubs are loaded at the input and output ports of the previously devised second-order frequency-symmetrical dual-band BPF block. The RF operational principles of all these dual-band BPFs are detailed through their associated transmission-line-based equivalent circuits. Moreover, for experimental-demonstration purposes, a 1.154-/2.818-GHz two-layer microstrip proof-of-concept prototype of a fourth-order sharp-rejection dual-band BPF is designed, simulated, and characterized. It features inter-band power-rejection levels higher than 28.68 dB and lower-/upper-stopband attenuation levels above 40.92 dB from DC to 4.64 GHz.
Posttraumatic stress disorder (PTSD) is a heterogenous disorder with frequent diagnostic comorbidity. Research has deciphered this heterogeneity by identifying PTSD subtypes and their neural biomarkers. This review summarizes current approaches, symptom-based group-level and data-driven approaches, for generating PTSD subtypes, providing an overview of current PTSD subtypes and their neural correlates. Additionally, we systematically assessed studies to evaluate the influence of comorbidity on PTSD subtypes and the predictive utility of biotypes for treatment outcomes. Following the PRISMA guidelines, a systematic search was conducted to identify studies employing brain imaging techniques, including functional magnetic resonance imaging (fMRI), structural MRI, diffusion-weighted imaging (DWI), and electroencephalogram (EEG), to identify biomarkers of PTSD subtypes. Study quality was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) guidelines. We included 53 studies, with 44 studies using a symptom-based group-level approach, and nine studies using a data-driven approach. Findings suggest biomarkers across the default-mode network (DMN) and the salience network (SN) throughout multiple subtypes. However, only six studies considered comorbidity, and four studies tested the utility of biotypes in predicting treatment outcomes. These findings highlight the complexity of PTSD’s heterogeneity. Although symptom-based and data-driven methods have advanced our understanding of PTSD subtypes, challenges remain in addressing the impact of comorbidities and the limited validation of biotypes. Future studies with larger sample sizes, brain-based data-driven approaches, careful account for comorbidity, and rigorous validation strategies are needed to advance biologically grounded biotypes across mental disorders.
The attachment-line boundary layer is critical in hypersonic flows because of its significant impact on heat transfer and aerodynamic performance. In this study, high-fidelity numerical simulations are conducted to analyse the subcritical roughness-induced laminar–turbulent transition at the leading-edge attachment-line boundary layer of a blunt swept body under hypersonic conditions. This simulation represents a significant advancement by successfully reproducing the complete leading-edge contamination process induced by a surface roughness element in a realistic configuration, thereby providing previously unattainable insights. Two roughness elements of different heights are examined. For the lower-height roughness element, additional unsteady perturbations are required to trigger a transition in the wake, suggesting that the flow field around the roughness element acts as a perturbation amplifier for upstream perturbations. Conversely, a higher roughness element can independently induce the transition. A low-frequency absolute instability is detected behind the roughness, leading to the formation of streaks. The secondary instabilities of these streaks are identified as the direct cause of the final transition.
This paper presents a method to design the response threshold (RT) of energy selective surface (ESS) based on series LC circuits (SLC_based_ESS). A simple SLC_based_ESS structure composed of metal strips and PIN diodes is used for demonstration. According to our research, the RT is rarely related to the geometry parameters of unit cells. By contrast, the RT could be designed by introducing auxiliary structures (ASs) to SLC_based_ESS arrays. With the AS, the induced currents on diodes are enhanced and thus RT is greatly reduced. Prototypes are fabricated and measured under different power levels. The results agree well with simulations, proving an effective design of RT by the proposed method.
The seminal Bolgiano–Obukhov (BO) theory established the fundamental framework for turbulent mixing and energy transfer in stably stratified fluids. However, the presence of BO scalings remains debatable despite their being observed in stably stratified atmospheric layers and convective turbulence. In this study, we performed precise temperature measurements with 51 high-resolution loggers above the seafloor for 46 h on the continental shelf of the northern South China Sea. The temperature observation exhibits three layers with increasing distance from the seafloor: the bottom mixed layer (BML), the mixing zone and the internal wave zone. A BO-like scaling $\alpha =-1.34\pm 0.10$ is observed in the temperature spectrum when the BML is in a weakly stable stratified ($N\sim 0.0018$ rad s$^{-1}$) and strongly sheared ($Ri\sim 0.0027$) condition, whereas in the unstably stratified convective turbulence of the BML, the scaling $\alpha =-1.76\pm 0.10$ clearly deviated from the BO theory but approached the classical $-$5/3 scaling in isotropic turbulence. This suggests that the convective turbulence is not the promise of BO scaling. In the mixing zone, where internal waves alternately interact with the BML, the scaling follows the Kolmogorov scaling. In the internal wave zone, the scaling $\alpha =-2.12 \pm 0.15$ is observed in the turbulence range and possible mechanisms are provided.
Web3 is a new frontier of internet architecture emphasizing decentralization and user control. This text for MBA students and industry professionals explores key Web3 concepts, starting from foundational principles and moving to advanced topics like blockchain, smart contracts, tokenomics, and DeFi. The book takes a clear, practical approach to demystify the tech behind NFTs and DAOs as well as the complex regulatory landscape. It confronts challenges of blockchain scalability, a barrier to mainstream adoption of this transformative technology, and examines smart contracts and the growing ecosystem leveraging their potential. The book also explains the nuances of tokenomics, a vital element underpinning Web3's new economic model. This book is ideal for readers seeking to stay on top of emerging trends in the digital economy.
Chapter 7 highlights key concepts in Decentralized Finance (DeFi) and compares it to traditional finance. It discusses major DeFi applications such as decentralized exchanges, lending/borrowing platforms, derivatives, prediction markets, and stablecoins. DeFi offers advantages, including open access, transparency, programmability, and composability. It enables peer-to-peer financial transactions without intermediaries, unlocking financial inclusion, efficiency gains, and innovation. However, risks such as smart contract vulnerabilities, price volatility, regulatory uncertainty, and lack of accountability persist. As DeFi matures, enhanced governance, security audits, regulation, and insurance will be vital to address these challenges. DeFi is poised to reshape finance if balanced with prudence. Important metrics to track growth include total value locked, trading volumes, active users, and loans outstanding. Research tools such as Dune Analytics, DeFi Llama, and DeFi Pulse provide data-driven insights. Overall, DeFi represents a profoundly transformative blockchain application, but responsible evolution is key. The chapter compares DeFi to traditional finance and analyzes major applications, benefits, risks, and metrics in this emerging field.
Chapter 1 provides an overview of the concepts and definitions inherent to Web3. It presents a deep exploration into the phenomenon of "Convergence of Convergence," a term coined to denote the convergence of various dimensions within Web3, such as technology, data, user interactions, business models, identity, and organizational structures. The chapter also offers a comparative study of Web3 from different perspectives – tracing its evolution in the Internet era, analyzing its implications for user experience, evaluating its regulatory aspects, and understanding its scalability. Each of these aspects is explored in a detailed, standalone section, allowing readers to comprehend the multifaceted nature of Web3. The overarching aim of this chapter is to foster a comprehensive understanding of Web3, delineating its significance as a major shift in the Internet paradigm and its potential for creating more decentralized, user-empowered digital ecosystems.
Chapter 11 envisions the future potential of Web3 technologies in reshaping the web. It covers key areas such as generative AI, DeFi, mobile apps, cloud infrastructure, and the Metaverse. In DeFi, the focus is on scalability, interoperability, regenerative finance, decentralized identity, and its integration with social networks. The convergence of generative AI and Web3 is examined through case studies and applications, while mobile apps are explored as nodes for consensus algorithms, providing decentralized and secure networks. The impact of Web3 on cloud infrastructure includes decentralized storage, blockchain-based authentication and authorization, decentralized computing resources, and token-based incentives. Lastly, the chapter delves into the Metaverse, discussing decentralized ownership, token economies, identity and privacy considerations, interoperability, and decentralized governance. Through these explorations, the chapter highlights the transformative potential of Web3 in fostering decentralization, inclusivity, and innovation in the digital era.
Chapter 10 explores the evolving regulatory landscape surrounding Web3 technologies. It highlights the need for coordinated and adaptive regulations to foster innovation while managing potential risks. The chapter examines the impact of major crypto company collapses in 2022 on regulatory frameworks and emphasizes the importance of proactive measures to protect investors and mitigate risks. It delves into the regulatory landscapes in the United States, the European Union, China, and Web3-friendly countries such as the United Arab Emirates, Singapore, Germany, and Switzerland. The chapter covers key initiatives, including the Executive Order Ensuring Responsible Development of Digital Assets and the Responsible Financial Innovation Act in the United States, as well as stablecoin regulations and regulatory challenges related to decentralized autonomous organizations (DAOs). It also explores the intersection of the General Data Protection Regulation (GDPR) and Web3, emphasizing the challenges of privacy and compliance. Overall, the chapter provides a comprehensive overview of regulatory considerations in Web3, addressing innovation, consumer protection, financial stability, and privacy concerns. It emphasizes the importance of regulatory coordination and adaptation to promote innovation while safeguarding against potential risks.
Chapter 2 leverages first principles thinking to reveal the seismic shift enabled by Web3’s self-sovereign Internet and decentralized economic architecture. Opportunities emerge in infrastructure, access, efficiency, accountability, and empowerment. On-chain data sharing and self-sovereign identity allow efficient bootstrapping in an open ecosystem. Decentralized finance increases financial access, while blockchain ID could facilitate inclusive programs such as universal basic income. By automating manual workflows, smart contracts and traceability boost efficiency. Immutable blockchain ledgers enhance transparency via innovations such as triple-entry accounting. The creator economy shifts power by enabling direct content monetization and ownership through NFT marketplaces, decentralized social platforms, and games. Despite adoption hurdles, Web3 fundamentally reshapes incentives around user control over identity, data, and value creation in a decentralized economy. Capturing the full potential requires reimagining economic systems, not just optimizing current models. This epochal shift promises to unlock tremendous value by aligning technology with empowerment in an open, user-centric Internet.