We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The pulsed jet is a novel and effective active mixing enhancement approach. For the transverse pulsed jet in the supersonic crossflow, the frequency influence is investigated using the three-dimensional Reynolds-averaged Navier–Stokes (RANS) equations coupled with the SST k-ω turbulence model. The averaged flow field properties of the pulsed jet are better than those of the steady jet when considering mixing efficiency and jet penetration depth, especially for the case with the pulsed frequency being 50kHz. The flow field structures of the pulsed jet are connected with the time, with periodic wave structures generating in the flow field and moving downstream. The size of the wave structures and its distance are related to the frequency, namely the size and flow distance are relatively small at 50kHz, and it takes some time for the pulsed jet to establish its influence in the full flow field. At low frequencies, the flow field produces large fluctuations, and this may be detrimental to the stable operation of the engine.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equation of state. Neutron star mergers are expected to often produce rapidly rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2–4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a Neutron Star Extreme Matter Observatory (NEMO): a gravitational-wave interferometer optimised to study nuclear physics with merging neutron stars. The concept uses high-circulating laser power, quantum squeezing, and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above 1 kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year and potentially allow for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
The dendrite morphologies of the cast nickel-based superalloy CMSX-4® (CMSX-4® is registered trademarks of the Cannon-Muskegon Corporation) and the austenitic stainless steel HP microalloy have been obtained via an automated serial-sectioning process which allows three-dimensional (3D) microstructural characterization. The dendrite arm spacing, volume fraction of segregation, and fraction of porosity have been determined. This technique not only increases the depth, scope, and level of detailed microstructural characterization but also delivers microstructural data for modeling and simulation.
Post-stroke depression (PSD) is the most common psychiatric complication facing stroke survivors and has been associated with increased distress, physical disability, poor rehabilitation, and suicidal ideation. However, the pathophysiological mechanisms underlying PSD remain unknown, and no objective laboratory-based test is available to aid PSD diagnosis or monitor progression.
Methods:
Here, an isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic approach was performed to identify differentially expressed proteins in plasma samples obtained from PSD, stroke, and healthy control subjects.
Results:
The significantly differentiated proteins were primarily involved in lipid metabolism and immunoregulation. Six proteins associated with these processes – apolipoprotein A-IV (ApoA-IV), apolipoprotein C-II (ApoC-II), C-reactive protein (CRP), gelsolin, haptoglobin, and leucine-rich alpha-2-glycoprotein (LRG) – were selected for Western blotting validation. ApoA-IV expression was significantly upregulated in PSD as compared to stroke subjects. ApoC-II, LRG, and CRP expression were significantly downregulated in both PSD and HC subjects relative to stroke subjects. Gelsolin and haptoglobin expression were significantly dysregulated across all three groups with the following expression profiles: gelsolin, healthy control > PSD > stroke subjects; haptoglobin, stroke > PSD > healthy control.
Conclusions:
Early perturbation of lipid metabolism and immunoregulation may be involved in the pathophysiology of PSD. The combination of increased gelsolin levels accompanied by decreased haptoglobin levels shows promise as a plasma-based diagnostic biomarker panel for detecting increased PSD risk in post-stroke patients.
Tuberculosis (TB) is generally considered a disease that principally afflicts the low-income segments of a population. In the Nanshan District of Shenzhen, China, with the economic transformation and a new Headquarters Economy (HE) emerging, there are now more cases in office workers than in manufacturing workers. To illustrate this trend, we describe a small TB outbreak in an office building located in the centre of the rapidly growing HE district. Two active pulmonary tuberculosis cases were found in workers who shared an office, and whole genome sequencing showed that the genetic distance between the strains of the two cases was just one single nucleotide polymorphism, consistent with intra-office transmission. Investigation of 30 other workers in the same or adjacent offices with interviews, interferon-gamma release assays (IGRAs) and chest X-rays, identified one new TB case and latent tuberculosis infection (LTBI) in 40.0% (12/30) of the contacts. The offices were under-ventilated. None of the IGRA positive, asymptomatic contacts agreed to receive treatment for LTBI, presumably due to TB stigma, and over the next 2 years 69.0% (20/29) of the contacts were lost to follow-up. Treatment for LTBI and stigma of TB remain challenges here. Office workers in the HE of rapidly economic developing areas should be targeted with increased vigilance by TB control programmes.
Tuberculosis (TB) is the leading cause of death among infectious diseases. China has a high burden of TB and accounted for almost 13% of the world's cases of multi-drug resistant (MDR) TB. Spinal TB is one reason for the resurgence of TB in China. Few large case studies of MDR spinal TB in China have been conducted. The aim of this research was to observe the epidemiological characteristics of inpatients with MDR spinal TB in six provinces and cities of China from 1999–2015. This is a multicentre retrospective observational study. Patients' information was collected from the control disease centre and infectious disease database of hospitals in six provinces and cities in China. A total of 3137 patients with spinal TB and 272 patients with MDR spinal TB were analysed. The result showed that MDR spinal TB remains a public health concern and commonly affects patients 15–30 years of age (34.19%). The most common lesions involved the thoracolumbar spine (35.66%). Local pain was the most common symptom (98.53%). Logistic analysis showed that for spinal TB patients, reside in rural district (OR 1.79), advanced in years (OR 1.92) and high education degree (OR 2.22) were independent risk factors for the development of MDR spinal TB. Women were associated with a lower risk of MDR spinal TB (OR 0.48). The most common first-line and second-line resistant drug was isoniazid (68.75%) and levofloxacin (29.04%), respectively. The use of molecular diagnosis resulted in noteworthy clinical advances, including earlier initiation of MDR spinal TB treatment, improved infection control and better clinical outcome. Chemotherapy and surgery can yield satisfactory outcomes with timely diagnosis and long-term treatment. These results enable a better understanding of the MDR spinal TB in China among the general public.
The effect of hot streaks from a gas turbine combustor on the thermodynamic load of internally air-cooled nozzle guide vanes (NGVs) and shrouds has been numerically investigated under flight conditions. The study follows two steps: one for the high-fidelity 60° combustor sector with simplified ten NGVs and three thermocouples attached; and the other for the NGV sectors where each sector consists of one high-fidelity NGV (probe NGV) and nine dummy NGVs. The first step identifies which NGV has the highest thermal load and provides the inlet flow boundary conditions for the second step. In the second step, the flow fields and thermal loads of the probe NGVs are resolved in detail.
With the systematically validated physical models, the two-phase flowfield of the combustor-NGVs sector has been successfully simulated. The predicted mean and maximum temperature at the combustor sector exit are in excellent agreement with the experimental data, which provides a solid basis for the hot-streak effect investigation. The results indicate that the second NGV, looking upstream from left, has the highest thermal load. Its maximum surface temperature is 8.4% higher than that for the same NGV but with the mean inlet boundary conditions, and 14.1% higher than the ninth NGV. The finding is consistent with the field-observed NGV damage pattern. To extend the service life of these vulnerable NGVs, some protection methods should be considered.
Heading date (HD) and flowering date (FD) are critical for yield potential and stability, so understanding their genetic foundation is of great significance in wheat breeding. Three related recombinant inbred line populations with a common female parent were developed to identify quantitative trait loci (QTL) for HD and FD in four environments. In total, 25 putative additive QTL and 20 pairwise epistatic effect QTL were detected in four environments. The additive QTL were distributed across 17 wheat chromosomes. Of these, QHd-1A, QHd-1D, QHd-2B, QHd-3B, QHd-4A, QHd-4B and QHd-6D were major and stable QTL for HD. QFd-1A, QFd-2B, QFd-4A and QFd-4B were major and stable QTL for FD. In addition, an epistatic interaction test showed that epistasis played important roles in controlling wheat HD and FD. Genetic relationships between HD/FD and five yield-related traits (YRTs) were characterized and ten QTL clusters (C1–C10) simultaneously controlling YRTs and HD/FD were identified. The present work laid a genetic foundation for improving yield potential in wheat molecular breeding programmes.
The seasonality of individual influenza subtypes/lineages and the association of influenza epidemics with meteorological factors in the tropics/subtropics have not been well understood. The impact of the 2009 H1N1 pandemic on the prevalence of seasonal influenza virus remains to be explored. Using wavelet analysis, the periodicities of A/H3N2, seasonal A/H1N1, A/H1N1pdm09, Victoria and Yamagata were identified, respectively, in Panzhihua during 2006–2015. As a subtropical city in southwestern China, Panzhihua is the first industrial city in the upper reaches of the Yangtze River. The relationship between influenza epidemics and local climatic variables was examined based on regression models. The temporal distribution of influenza subtypes/lineages during the pre-pandemic (2006–2009), pandemic (2009) and post-pandemic (2010–2015) years was described and compared. A total of 6892 respiratory specimens were collected and 737 influenza viruses were isolated. A/H3N2 showed an annual cycle with a peak in summer–autumn, while A/H1N1pdm09, Victoria and Yamagata exhibited an annual cycle with a peak in winter–spring. Regression analyses demonstrated that relative humidity was positively associated with A/H3N2 activity while negatively associated with Victoria activity. Higher prevalence of A/H1N1pdm09 and Yamagata was driven by lower absolute humidity. The role of weather conditions in regulating influenza epidemics could be complicated since the diverse viral transmission modes and mechanism. Differences in seasonality and different associations with meteorological factors by influenza subtypes/lineages should be considered in epidemiological studies in the tropics/subtropics. The development of subtype- and lineage-specific prevention and control measures is of significant importance.
The thermodynamic solubility product for baryte, determined at standard conditions, from data in commonly used compilations, was compared with published experimental solubility products for baryte and with the solubility products from databases used by the PHREEQC geochemical speciation code and MultiScale, which is often used by oil companies to predict or describe baryte scaling. The values in the various databases agree well with experimental data (10–10.05–10–9.96; Melcher, 1910; Neuman, 1933; Templeton, 1960; Davis and Collins, 1971; Blount, 1977; Felmy et al., 1990), which agree within uncertainty with the values presented in the compilations of Robie et al. (1979), Wagman et al. (1982), Lide (2005), Raju and Atkinson (1988), as well as Nordstrom and Munoz (1994), whose values have the least uncertainty. In solutions of 50% seawater mixed with 50% reservoir formation waters, the data predict baryte supersaturation, both at standard temperature and at the temperatures expected in the reservoir, completely consistent with field observations. This provides confidence that the Pitzer approach for activity correction and the database is valid for investigations of baryte precipitation rates in high ionic strength solutions.
Simulation models are used widely in pharmacology, epidemiology and health economics (HEs). However, there have been no attempts to incorporate models from these disciplines into a single integrated model. Accordingly, we explored this linkage to evaluate the epidemiological and economic impact of oseltamivir dose optimisation in supporting pandemic influenza planning in the USA. An HE decision analytic model was linked to a pharmacokinetic/pharmacodynamics (PK/PD) – dynamic transmission model simulating the impact of pandemic influenza with low virulence and low transmissibility and, high virulence and high transmissibility. The cost-utility analysis was from the payer and societal perspectives, comparing oseltamivir 75 and 150 mg twice daily (BID) to no treatment over a 1-year time horizon. Model parameters were derived from published studies. Outcomes were measured as cost per quality-adjusted life year (QALY) gained. Sensitivity analyses were performed to examine the integrated model's robustness. Under both pandemic scenarios, compared to no treatment, the use of oseltamivir 75 or 150 mg BID led to a significant reduction of influenza episodes and influenza-related deaths, translating to substantial savings of QALYs. Overall drug costs were offset by the reduction of both direct and indirect costs, making these two interventions cost-saving from both perspectives. The results were sensitive to the proportion of inpatient presentation at the emergency visit and patients’ quality of life. Integrating PK/PD–EPI/HE models is achievable. Whilst further refinement of this novel linkage model to more closely mimic the reality is needed, the current study has generated useful insights to support influenza pandemic planning.
The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (~2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor.
Seed shape (SS) affects the yield and appearance of soybean seeds significantly. However, little detailed information has been reported about the quantitative trait loci (QTL) affecting SS, especially SS components such as seed length (SL), seed width (SW) and seed thickness (ST), and their mutual ratios of length-to-weight (SLW), length-to-thickness (SLT) and weight-to-thickness (SWT). The aim of the present study was to identify QTL underlying SS components using 129 recombinant inbred lines derived from a cross between Dongnong46 and L-100. Phenotypic data were collected from this population after it was grown across nine environments. A total of 213 simple sequence repeat markers were used to construct the genetic linkage map, which covered approximately 3623·39 cM, with an average distance of 17·01 cM between markers. Five QTL were identified as being associated with SL, five with SW, three with ST, four with SLW, two with SLT and three with SWT. These QTL could explain 1·46–22·16% of the phenotypic variation in SS component traits. Three QTL were identified in more than six tested environments three for SL, two for SW, one for ST, two for SLW and one for SLT. These QTL have great potential value for marker-assistant selection of SS in soybean seeds.
Information on morbidity burden of seasonal influenza in China is limited. A multiplier model was used to estimate the incidence and number of outpatient visits for seasonal influenza by age group for the 2015–2016 season in Beijing, the capital of China, based on reported numbers of influenza-like illness consultations and proportions of positive cases from influenza surveillance systems in Beijing, general consultation rates and other parameters from previous studies, surveys and surveillance systems. An estimated total of 1 190 200 (95% confidence interval (CI) 830 400–1 549 900) cases of influenza virus infections occurred in Beijing, 2015–2016 season, with an attack rate of 5·5% (95% CI 3·9–7·2%). These infections resulted in an estimated 468 280 (95% CI 70 700–606 800) outpatient visits, with an attack rate of 2·2% (95% CI 0·3–2·8%). The attack rate of influenza virus infections was highest among children aged 0–4 years (31·9% (95% CI 21·9–41·9%)), followed by children aged 5–14 years (18·7% (95% CI 12·9–24·5%)). Our study demonstrated a substantial influenza-related morbidity in Beijing, China, especially among the preschool- and school-aged children. This suggests that development or modification of seasonal influenza targeted vaccination strategies need to recognize that incidence is highest in children.
The purpose of this study was to investigate whether significant difference exists on radiation dose delivered to organs at risks in megavoltage computed tomography (MVCT) verification using three predefined scanning modes, namely fine (2 mm), normal (4 mm) and coarse (6 mm). This will provide information for the imaging protocol of tomotherapy for the left breast.
Materials and methods
Organ doses were measured using thermoluminescent dosimeters (TLD-100) placed within a female Rando phantom for MVCT imaging. Kruskal–Wallis test was conducted with p<0·05 to evaluate the significant difference between the three MVCT scanning modes.
Results
Statistically significant difference existed in organ absorbed dose between different scan mode selections (p<0·001). Relative to the normal scan selection (4 mm), the absorbed dose to the organs of interests can be scaled down by 0·7 and scaled up by 2·1 for coarse (6 mm) and fine scans (2 mm) respectively.
Conclusions
Optimisation of imaging protocols is of paramount importance to keep the radiation exposure ‘as low as reasonably achievable’. The recommendation of undergoing daily coarse mode for MVCT verification in breast tomotherapy not only mitigates the radiation exposure to normal tissues, but also trims the scan-acquisition time.
The effects of obesity on reproduction have been widely reported in humans and mice. The present study was designed to compare the reproductive performance of lean and fat chicken lines, divergently selected for abdominal fat content. The following parameters were determined and analyzed in the two lines: (1) reproductive traits, including age at first egg and total egg numbers from generations 14 to 18, absolute and relative testicular weights at 7, 14, 25, 30, 45 and 56 weeks of age, semen quality at 30, 45 and 56 weeks of age in generation 18, and fertility and hatchability from generations 14 to 18; (2) reproductive hormones at 7, 14, 25, 30, 45 and 56 weeks of age in generation 18; (3) and the relative mRNA abundance of genes involved in reproduction at 7, 14, 25, 30, 45 and 56 weeks of age in generation 18. In females, birds in the lean line laid more eggs from the first egg to 40 weeks of age than the birds in the fat line. In male broilers, the birds in the lean line had higher absolute and relative testicular weights at 7, 14 and 25 weeks of age, but lower absolute and relative testicular weights at 56 weeks of age than the birds in the fat line. Male birds in the lean line had greater sperm concentrations and larger numbers of motile and morphologically normal sperms at 30, 45 and 56 weeks of age than the birds in the fat line. Fertility and hatchability were also higher in the lean line than in the fat line. Significant differences in the plasma levels of reproductive hormones and the expression of reproduction-associated genes were also found at different ages in the lean and fat birds, in both males and females. These results suggest that reproductive performance is better in lean birds than in fat birds. In view of the unique divergent lines used in this study, these results imply that selecting for abdominal fat deposition negatively affects the reproductive performance of birds.
Lutein benefits human health significantly, including that of the eyes, skin and heart. Therefore, increasing lutein content in soybean seeds is an important objective for breeding programmes. However, no information about soybean lutein-related quantitative trait loci (QTL) has been reported, as of 2016. The aim of the present study was to identify QTLs underlying the lutein content in soybean seeds. A population including 129 recombinant inbred lines was developed from the cross between ‘Dongnong46’ (lutein 13·10 µg/g) and ‘L-100’ (lutein 23·96 µg/g), which significantly differed in seed lutein contents. This population was grown in ten environments including Harbin in 2012, 2013, 2014 and 2015; Hulan in 2013, 2014 and 2015; and Acheng in 2013, 2014 and 2015. A total of 213 simple sequence repeat markers were used to construct the genetic linkage map, which covered approximately 3623·39 cM, with an average distance of 17·01 cM between markers. In the present study, eight QTLs associated with lutein content were found initially, which could explain 1·01–19·66% of the observed phenotypic variation in ten different tested environments. The phenotypic contribution of qLU-1 (located near BARC-Satt588 on chromosome 9 (Chr 9; linkage group (LG) K)) was >10% across seven tested environments, while qLU-2 (located near Satt192 of Chr 12 (LG H)) and qLU-3 (located near Satt353 of Chr12 (LGH)) could explain 5–10% of the observed phenotypic variation in more than seven environments, respectively. qLU-5, qLU-6, qLU-7 and qLU-8 could be detected in more than four environments. These eight QTLs were novel, and have considerable potential value for marker-assistant selection of higher lutein content in soybean lines.
An experimental investigation into laser ablation of secondary explosives, cyclotetramethylene tetranitramine (HMX), has been carried out by using a solid-state laser at the wavelength of 1064 nm. The ion particles of decomposition were detected by using a time-of-flight mass spectrometer. Possible attributions of both negative ions and positive ions were obtained. Some obvious peaks were found at m/z = 18, 28, 46, 60, and 106, corresponding to H2O, CO/N2/H2CN, NO2, CH2NO2/N2O2, and N(NO2)2/CH2(NO2)2, respectively. According to the distribution of the particles, three possible pathways were proposed to explain the process of particles. The results may shed some light on the possible decomposition mechanism of HMX under laser initiation.
Retreatment of tuberculosis (TB) often fails in China, yet the risk factors associated with the failure remain unclear. To identify risk factors for the treatment failure of retreated pulmonary tuberculosis (PTB) patients, we analyzed the data of 395 retreated PTB patients who received retreatment between July 2009 and July 2011 in China. PTB patients were categorized into ‘success’ and ‘failure’ groups by their treatment outcome. Univariable and multivariable logistic regression were used to evaluate the association between treatment outcome and socio-demographic as well as clinical factors. We also created an optimized risk score model to evaluate the predictive values of these risk factors on treatment failure. Of 395 patients, 99 (25·1%) were diagnosed as retreatment failure. Our results showed that risk factors associated with treatment failure included drug resistance, low education level, low body mass index (<18·5), long duration of previous treatment (>6 months), standard treatment regimen, retreatment type, positive culture result after 2 months of treatment, and the place where the first medicine was taken. An Optimized Framingham risk model was then used to calculate the risk scores of these factors. Place where first medicine was taken (temporary living places) received a score of 6, which was highest among all the factors. The predicted probability of treatment failure increases as risk score increases. Ten out of 359 patients had a risk score >9, which corresponded to an estimated probability of treatment failure >70%. In conclusion, we have identified multiple clinical and socio-demographic factors that are associated with treatment failure of retreated PTB patients. We also created an optimized risk score model that was effective in predicting the retreatment failure. These results provide novel insights for the prognosis and improvement of treatment for retreated PTB patients.