We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An actively controllable cascaded proton acceleration driven by a separate 0.8 picosecond (ps) laser is demonstrated in proof-of-principle experiments. MeV protons, initially driven by a femtosecond laser, are further accelerated and focused into a dot structure by an electromagnetic pulse (EMP) on the solenoid, which can be tuned into a ring structure by increasing the ps laser energy. An electrodynamics model is carried out to explain the experimental results and show that the dot-structured proton beam is formed when the outer part of the incident proton beam is optimally focused by the EMP force on the solenoid; otherwise, it is overfocused into a ring structure by a larger EMP. Such a separately controlled mechanism allows precise tuning of the proton beam structures for various applications, such as edge-enhanced proton radiography, proton therapy and pre-injection in traditional accelerators.
We sought to assess the degree to which environmental risk factors affect CHD prevalence using a case–control study.
Methods:
A hospital-based study was conducted by collecting data from outpatients between January 2016 and January 2021, which included 31 CHD cases and 72 controls from eastern China. Risk ratios were estimated using univariate and multivariate logistic regression models and mediating effect analysis.
Results:
Residential characteristics (usage of cement flooring, odds ratio = 17.04[1.954–148.574], P = 0.01; musty smell, odds ratio = 3.105[1.198–8.051], P = 0.02) and indoor total volatile organic compound levels of participants’ room (odds ratio = 31.846[8.187–123.872, P < 0.001), benzene level (odds ratio = 7.370[2.289–23.726], P = 0.001) increased the risk of CHDs in offspring. And folic acid plays a masking effect, which mitigates the affection of the total volatile organic compound (indirect effect = -0.072[−0.138,-0.033]) and formaldehyde (indirect effect = −0.109[-0.381,-0.006]) levels on the incidence of CHDs. While food intake including milk (odds ratio = 0.396[0.16–0.977], P = 0.044), sea fish (odds ratio = 0.273[0.086–0.867], P = 0.028), and wheat (odds ratio = 0.390[0.154–0.990], P = 0.048) were all protective factors for the occurrence of CHDs. Factors including women reproductive history (history of conception control, odds ratio = 2.648[1.062–6.603], P = 0.037; history of threatened abortion, odds ratio = 2.632[1.005–6.894], P = 0.049; history of dysmenorrhoea (odds ratio = 2.720[1.075–6.878], P = 0.035); sleep status (napping habit during daytime, odds ratio = 0.856[0.355–2.063], P = 0.047; poor sleep quality, odds ratio = 3.180[1.037–9.754], P = 0.043); and work status (working time > 40h weekly, odds ratio = 2.882[1.172–7.086], P = 0.021) also influenced the CHDs incidence to differing degrees.
Conclusion:
Diet habits, nutrients intake, psychological status of pregnant women, and residential air quality were associated with fetal CHDs. Indoor total volatile organic compound content was significantly correlated with CHDs risk, and folic acid may serve as a masking factor that reduce the harmful effects of air pollutants.
Two-dimensional simulations incorporating detailed chemistry are conducted for detonation initiation induced by dual hot spots in a hydrogen/oxygen/argon mixture. The objective is to examine the transient behaviour of detonation initiation as facilitated by dual hot spots, and to elucidate the underlying mechanisms. Effects of hot spot pressure and distance on the detonation initiation process are assessed; and five typical initiation modes are identified. It is found that increasing the hot spot pressure promotes detonation initiation, but the impact of the distance between dual hot spots on detonation initiation is non-monotonic. During the initiation process, the initial hot spot autoignites, and forms the cylindrical shock waves. Then, the triple-shock structure, which is caused by wave collisions and consists of the longitudinal detonation wave, transverse detonation wave and cylindrical shock wave, dominates the detonation initiation behaviour. A simplified theoretical model is proposed to predict the triple-point path, whose curvature quantitatively indicates the diffraction intensity of transient detonation waves. The longitudinal detonation wave significantly diffracts when the curvature of the triple-point path is large, resulting in the failed detonation initiation. Conversely, when the curvature is small, slight diffraction effects fail to prevent the transient detonation wave from developing. The propagation of the transverse detonation wave is affected not only by the diffraction effects but also by the mixture reactivity. When the curvature of the triple-point trajectory is large, a strong cylindrical shock wave is required to compress the mixture, enhancing its reactivity to ensure the transverse detonation wave can propagate without decoupling.
Multimorbidity, especially physical–mental multimorbidity, is an emerging global health challenge. However, the characteristics and patterns of physical–mental multimorbidity based on the diagnosis of mental disorders in Chinese adults remain unclear.
Methods
A cross-sectional study was conducted from November 2004 to April 2005 among 13,358 adults (ages 18–65years) residing in Liaoning Province, China, to evaluate the occurrence of physical–mental multimorbidity. Mental disorders were assessed using the Composite International Diagnostic Interview (version 1.0) with reference to the Diagnostic and Statistical Manual of Mental Disorders (3rd Edition Revised), while physical diseases were self-reported. Physical–mental multimorbidity was assessed based on a list of 16 physical and mental morbidities with prevalence ≥1% and was defined as the presence of one mental disorder and one physical disease. The chi-square test was used to calculate differences in the prevalence and comorbidity of different diseases between the sexes. A matrix heat map was generated of the absolute number of comorbidities for each disease. To identify complex associations and potential disease clustering patterns, a network analysis was performed, constructing a network to explore the relationships within and between various mental disorders and physical diseases.
Results
Physical–mental multimorbidity was confirmed in 3.7% (498) of the participants, with a higher prevalence among women (4.2%, 282) than men (3.3%, 216). The top three diseases with the highest comorbidity rate and average number of comorbidities were dysphoric mood (86.3%; 2.86), social anxiety disorder (77.8%; 2.78) and major depressive disorder (77.1%; 2.53). A physical–mental multimorbidity network was visually divided into mental and physical domains. Additionally, four distinct multimorbidity patterns were identified: ‘Affective-addiction’, ‘Anxiety’, ‘Cardiometabolic’ and ‘Gastro-musculoskeletal-respiratory’, with the digestive-respiratory-musculoskeletal pattern being the most common among the total sample. The affective-addiction pattern was more prevalent in men and rural populations. The cardiometabolic pattern was more common in urban populations.
Conclusions
The physical–mental multimorbidity network structure and the four patterns identified in this study align with previous research, though we observed notable differences in the proportion of these patterns. These variations highlight the importance of tailored interventions that address specific multimorbidity patterns while maintaining broader applicability to diverse populations.
We conducted a series of pore-scale numerical simulations on convective flow in porous media, with a fixed Schmidt number of 400 and a wide range of Rayleigh numbers. The porous media are modeled using regularly arranged square obstacles in a Rayleigh–Bénard (RB) system. As the Rayleigh number increases, the flow transitions from a Darcy-type regime to an RB-type regime, with the corresponding $Sh$–$Ra_D$ relationship shifting from sublinear scaling to the classical 0.3 scaling of RB convection. Here, $Sh$ and $Ra_D$ represent the Sherwood number and the Rayleigh–Darcy number, respectively. For different porosities, the transition begins at approximately $Ra_D = 4000$, at which point the characteristic horizontal scale of the flow field is comparable to the size of a single obstacle unit. When the thickness of the concentration boundary layer is less than approximately one-sixth of the pore spacing, the flow finally enters the RB regime. In the Darcy regime, the scaling exponent of $Sh$ and $Ra_D$ decreases as porosity increases. Based on the Grossman–Lohse theory (J. Fluid Mech. vol. 407, 2000, pp. 27–56; Phys. Rev. Lett. vol. 86, 2001, p. 3316), we provide an explanation for the scaling laws in each regime and highlight the significant impact of mechanical dispersion effects during the development of the plumes. Our findings provide some new insights into the validity range of the Darcy model.
In this paper, a polarization-reconfigurable antenna fed by a coplanar waveguide (CPW) using a stepped structure is presented. The main parts of the proposed antenna consist of a CPW-fed monopole and four branches. After studying and analyzing the structure and mechanism of the antenna, it was found that different polarizations can be generated by adjusting the antenna’s structure. Based on the mechanism, four PIN diodes are utilized and inserted between the four branches and the monopole for the switching. By controlling the ON/OFF states of the four PIN diodes, the antenna can switch among left-hand circular polarization (LHCP), right-hand circular polarization (RHCP), and linear polarization (LP). The optimized antenna has been fabricated and measured. Measured results indicate that the antenna’s −10-dB impedance bandwidth for LP is 15.93%, covering the frequency range from 2.3 to 2.71 GHz. The overlap bandwidth of −10-dB impedance and 3-dB axial ratio for the LHCP mode is 18.96%, covering frequencies from 2.1 to 2.54 GHz. For the RHCP mode, the overlap bandwidth is 20.5%, covering frequencies from 2 to 2.52 GHz. At all the three polarization modes, the antenna is capable of covering the 2.4-GHz WLAN band (2400–2480 MHz) as well as the LTE TD 2300 band (2300–2400 MHz).
We perform simulations of a two-fluid–structure interaction problem involving liquid–gas flow past a fully submerged stationary circular cylinder. Interactions between the liquid–gas interface with finite surface tension and flow disturbances arising from the cylinder induce a variety of interfacial phenomena and wake structures. We map different interface regimes in a parameter space defined by the Bond number $Bo \in [100, 5000]$ and the submergence depth $h/D \in [1, 2.5]$ of the cylinder while keeping the Reynolds (Re) and Weber (We) numbers fixed at 150 and 1000, respectively. The emerging interface features are classified into three distinct regimes: interfacial waves generated by Strouhal vortices, the entrainment of multi-scale gas bubbles and the reduced deformation state. In the interfacial wave regime, we demonstrate that the frequency of transverse interface fluctuations at a specific streamwise location is identical to the vortex shedding frequency. Additionally, the wavelength of interfacial waves is determined by the size of vortex pairs consisting of alternating Strouhal vortices. In the gas entrainment regime at $ Bo = 1000$, our bubble-size distributions reveal that the entrained bubbles have sizes ranging from one to two orders of magnitude smaller than the cylinder. These multi-scale bubbles are formed primarily through plunging and surfing breakers at $h/D = 2.5$. In contrast, at $h/D = 1$, smaller bubbles initially emerge from the breakup of a gas finger. Over time, some of these bubbles grow in size through coalescence cascades. The influence of $ Re \in [50, 150]$ and $ We \in [700, 1100]$ on gas entrainment is quantified in terms of mean bubble size and count. Lastly, we demonstrate how the deformability of the liquid–gas interface drives the hydrodynamic lift force acting on the cylinder. The net downward lift materializes only in the gas entrainment and reduced deformation regimes due to the broken symmetry of the front stagnation point. While our study focuses on two-dimensional simulations, we also provide insights into the three-dimensional gas entrainment mechanism for one of the extreme cases at $h/D = 1$.
Desminopathy is a rare heritable cardiac and skeletal muscle disease caused by variants in the DES gene, which encodes the primary muscle-specific intermediate filament protein, known as desmin. Childhood-onset is commonly associated with severe early-onset myopathy and early death. Here, we reported an 11-year-old Chinese girl presenting with complete atrioventricular block and cardiomyopathy, without skeletal muscle involvement. Genetic analysis identified a de novo variant (c.152C > T/p.Ser51Phe) in the DES gene.
Laser-driven inertial confinement fusion (ICF) diagnostics play a crucial role in understanding the complex physical processes governing ICF and enabling ignition. During the ICF process, the interaction between the high-power laser and ablation material leads to the formation of a plasma critical surface, which reflects a significant portion of the driving laser, reducing the efficiency of laser energy conversion into implosive kinetic energy. Effective diagnostic methods for the critical surface remain elusive. In this work, we propose a novel optical diagnostic approach to investigate the plasma critical surface. This method has been experimentally validated, providing new insights into the critical surface morphology and dynamics. This advancement represents a significant step forward in ICF diagnostic capabilities, with the potential to inform strategies for enhancing the uniformity of the driving laser and target surface, ultimately improving the efficiency of converting laser energy into implosion kinetic energy and enabling ignition.
Women with schizophrenia frequently discontinue antipsychotic medications during pregnancy. However, evidence on the risk of postpartum relapse associated with antipsychotic use during pregnancy is lacking.
Aims
To investigate the within-individual association between antipsychotic continuation during pregnancy and postpartum relapse in women with schizophrenia.
Method
This retrospective cohort study used data of women with schizophrenia who gave live birth between 2007 and 2018 identified from the National Health Information Database of South Korea. Women were classified according to antipsychotic use patterns during the 12 months before delivery as non-users, discontinuers and continuers. Relapse was defined as admission for psychosis (ICD-10, F20–29). The incidence rate ratio (IRR) for admission for psychosis in the 6-month postpartum period was estimated using conditional Poisson regression, with the reference period set between 2 and 1 years before delivery. Additionally, we calculated the relative risk ratios (RRRs) for the IRRs of different antipsychotic use patterns.
Results
Among the 3026 women included in the analysis (median age 34 years, interquartile range 31–37), the within-individual risk of admission for psychosis in the 6-month postpartum period was 0.56 times (RRR, 95% CI 0.36–0.87) lower in continuers (IRR = 1.31, 95% CI 0.89–1.72) than in discontinuers (IRR = 2.34, 95% CI 1.87–2.91). Among discontinuers, the IRRs of admission for psychosis in the 6-month postpartum period did not change significantly with the timing of discontinuation (trend P = 0.946).
Conclusions
Antipsychotic continuation during pregnancy was associated with a reduced risk of postpartum relapse in women with schizophrenia. Continuing antipsychotics during pregnancy would be recommended after a risk–benefit assessment.
The flexible delivery of single-frequency lasers is far more challenging than that of conventional lasers due to the onset of stimulated Brillouin scattering (SBS). Here we present the successful delivery of 100 W single-frequency laser power through 100 m of anti-resonant hollow-core fiber (AR-HCF) in an all-fiber configuration, with the absence of SBS. By employing a custom-designed AR-HCF with a mode-field diameter matching that of a large-mode-area panda fiber, the system achieves high coupling efficiency without the need for free-space components or fiber post-processing. The AR-HCF attains a transmission efficiency of 92%, delivering an output power of 100.3 W with a beam quality factor (M2) of 1.22. The absence of SBS is confirmed through monitoring backward light, which shows no increase in intensity. This all-fiber architecture ensures high stability, compactness and efficiency, potentially expanding the application scope of single-frequency lasers in high-precision metrology, optical communication, light detection and ranging systems, gravitational wave detection and other advanced applications.
Working memory deficit, a key feature of schizophrenia, is a heritable trait shared with unaffected siblings. It can be attributed to dysregulation in transitions from one brain state to another.
Aims
Using network control theory, we evaluate if defective brain state transitions underlie working memory deficits in schizophrenia.
Method
We examined average and modal controllability of the brain's functional connectome in 161 patients with schizophrenia, 37 unaffected siblings and 96 healthy controls during a two-back task. We use one-way analysis of variance to detect the regions with group differences, and correlated aberrant controllability to task performance and clinical characteristics. Regions affected in both unaffected siblings and patients were selected for gene and functional annotation analysis.
Results
Both average and modal controllability during the two-back task are reduced in patients compared to healthy controls and siblings, indicating a disruption in both proximal and distal state transitions. Among patients, reduced average controllability was prominent in auditory, visual and sensorimotor networks. Reduced modal controllability was prominent in default mode, frontoparietal and salience networks. Lower modal controllability in the affected networks correlated with worse task performance and higher antipsychotic dose in schizophrenia (uncorrected). Both siblings and patients had reduced average controllability in the paracentral lobule and Rolandic operculum. Subsequent out-of-sample gene analysis revealed that these two regions had preferential expression of genes relevant to bioenergetic pathways (calmodulin binding and insulin secretion).
Conclusions
Aberrant control of brain state transitions during task execution marks working memory deficits in patients and their siblings.
Pemetrexed and immunotherapies (e.g., pembrolizumab) are approved for first-line maintenance (1LM) treatment of nonsquamous advanced/metastatic non-small-cell lung cancer (NSCLC), but real-world data on their use are limited. The objective of this study was to assess 1LM clinical outcomes, safety, and treatment patterns of immunotherapy versus immunotherapy+pemetrexed among patients with advanced/metastatic NSCLC from the EU4 (France, Germany, Italy, Spain)+UK.
Methods
Data from patients in the US, Canada, and EU4+UK with nonsquamous advanced/metastatic NSCLC without targetable mutations were collected via electronic case report form. Physician-identified patients (≥18 y) in the EU4+UK were eligible for this subgroup analysis if they achieved stable disease or complete or partial response with first-line platinum-based chemotherapy+immunotherapy (January 2019 to March 2021) and received 1LM immunotherapy or immunotherapy+pemetrexed. Patients were followed from index (1LM initiation) until last physician contact or death. Outcomes were overall survival (OS), progression-free survival (PFS), treatment patterns and duration, and adverse events.
Results
Among the selected 367 patients (male, 71.9%; mean±StDev age, 63.4±7.2 y; current/former smokers, 85.8%), 203 (55.3%) received immunotherapies, most commonly pembrolizumab (n=173; 85.2%), and 164 (44.7%) received immunotherapy+pemetrexed. Patients receiving immunotherapy had longer median adjusted OS and PFS compared to those receiving immunotherapy+pemetrexed (OS hazard ratio [HR]: 0.63; 95% confidence interval [CI]: 0.36, 0.90; PFS HR: 0.58; 95% CI: 0.38, 0.79). Patients receiving immunotherapy versus patients receiving immunotherapy+pemetrexed had longer median treatment duration (14.0 vs 10.3 mo; p<0.001) and were less likely to experience anemia (19.7% vs 33.5%; p<0.01). Results were similar in the overall study population.
Conclusions
In this real-world study, among the selected patients with nonsquamous advanced/metastatic NSCLC who achieved stable disease or complete or partial response with first-line therapy, the addition of pemetrexed to immunotherapy in 1LM did not appear to confer a clinical benefit. Identifying treatments that can improve clinical outcomes for these patients remains an area of unmet need.
External seeded free-electron lasers (FELs) have exhibited substantial progress in diverse applications over the last decade. However, the frequency up-conversion efficiency in single-stage seeded FELs, particularly in high-gain harmonic generation (HGHG), remains constrained to a modest level. This limitation restricts its capability to conduct experiments within the ‘water window’. This paper presents a novel method for generating coherent X-ray FEL pulses in the water window region based on the HGHG scheme with multi-stage harmonic cascade. Without any additional modifications to the HGHG configuration, simulation results demonstrate the generation of intense 3 nm coherent FEL radiation using an external ultraviolet seed laser. This indicates an increase of the harmonic conversion number to approximately 90. A preliminary experiment is performed to evaluate the feasibility of this method. The proposed approach could potentially serve as an efficient method to broaden the wavelength coverage accessible to both existing and planned seeded X-ray FEL facilities.
The reactive Navier–Stokes equations with adaptive mesh refinement and a detailed chemical reactive mechanism (11 species, 27 steps) were adopted to investigate a detonation engine considering the injection and supersonic mixing processes. Flame acceleration and deflagration-to-detonation transition (DDT) in a premixed/inhomogeneous supersonic hydrogen–air mixture with and without transverse jet obstacles were addressed. Results demonstrate the difficulty in undergoing DDT in the premixed/inhomogeneous supersonic mixture within a smooth chamber. By contrast, multiple transverse jets injected into the chamber aid detonation transition by introducing perturbed vortices, shock waves and a suitable blockage ratio. Increasing distance between the leading shock and the flame tip impedes detonation transition due to an insufficient blockage ratio. The extremely perturbed distributions of fuel-lean and fuel-rich mixtures lead to more complicated flame structures. Also, a larger flame thickness appears in the inhomogeneous mixture compared with the premixed mixture, resulting in a lower combustion temperature. The key findings are that the DDT, detonation quenching and reinitiation are generated in the inhomogeneous supersonic mixture, but both DDT mechanisms are ascribed to a strong Mach stem with the Zel'dovich gradient mechanism. Additionally, the obtained results demonstrate that an intensely fuel-lean mixture (equivalence ratio = 0.15) results in a partially decoupled flame front. However, detonation reinitiation and subsequent self-sustained detonation occur when a fierce shock wave propagates through a highly sensitive mixture, even within a smaller and elongated area. Moreover, the inhomogeneous mixture also augments the propagation speed and detonation cell structure instabilities and delays the sonic point resulting from the extending non-equilibrium reaction.
We present a practical verification method for safety analysis of the autonomous driving system (ADS). The main idea is to build a surrogate model that quantitatively depicts the behavior of an ADS in the specified traffic scenario. The safety properties proved in the resulting surrogate model apply to the original ADS with a probabilistic guarantee. Given the complexity of a traffic scenario in autonomous driving, our approach further partitions the parameter space of a traffic scenario for the ADS into safe sub-spaces with varying levels of guarantees and unsafe sub-spaces with confirmed counter-examples. Innovatively, the partitioning is based on a branching algorithm that features explainable AI methods. We demonstrate the utility of the proposed approach by evaluating safety properties on the state-of-the-art ADS Interfuser, with a variety of simulated traffic scenarios, and we show that our approach and existing ADS testing work complement each other. We certify five safe scenarios from the verification results and find out three sneaky behavior discrepancies in Interfuser which can hardly be detected by safety testing approaches.
With the increase in egg production rate and the coming of peak laying period, some metabolic disorders usually emerge in layers. The current study was conducted to compare the physiological difference between the early laying stage (around 30% laying rate) and peak laying stage (more than 95% laying rate) of laying hens based on hepatic transcriptome, serum metabolomics and caecal microbiota. The results showed that the egg weight and yolk weight were significantly higher in peak laying hens. Further, serum malondialdehyde and total bile acid concentrations were higher, but total anti-oxidant capacity, total bilirubin and low-density lipoprotein cholesterol (LDL-c) concentrations were significantly lower in peak laying hens. Hepatic transcriptome analysis identified 540 up-regulated and 269 down-regulated genes. Consistently, fatty acid biosynthesis, PPAR and insulin signalling pathways were significantly enriched. Subsequently, the result of serum metabolomics identified 74 up- and 77 down-regulated metabolites. Among down-regulated metabolites, hesperetin, apigenin and betaine related to anti-oxidant function were down-regulated. In addition, western blotting result showed BCL2 and p53 proteins expressions were decreased in the peak laying period, whereas hepatic CEBPα protein level was increased. On the other hand, gut microbiota analysis revealed that Chao index was decreased in peak laying hens. And the LEfSe analysis showed the dominant microflora including Ruminococcus, Oxalobacter, Paracoccus and so on was found in peak laying hens. These findings indicated that the hepatic lipid metabolism of peak laying hens is enhanced and the decline in anti-oxidant performance of hens also implies its importance during the early stage of egg production.
We report a high-power ultra-narrow fiber-coupled diode laser using a Faraday anomalous dispersion optical filter (FADOF) as an external cavity element. An external cavity suitable for both the fiber-coupled package and FADOF configuration has been proposed. Using a 87Rb-based FADOF as the frequency-selective element, we realized a 103 W continuous laser output with a uniform circular beam. The center wavelength was precisely locked at the D2 line of the Rb resonance, and the bandwidth was narrowed from 1.8 nm (free-running, full width at half maximum (FWHM)) to 0.013 nm (6.9 GHz, FWHM). The side mode suppression ratio reached 31 dB. Such diode lasers with precise wavelength and high spectral brightness have critical applications in many fields, such as high-energy gas laser pumping, spin-exchange optical pumping, Raman spectroscopy and nonlinear optics.