We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Vessel collision risk estimation is crucial in navigation manoeuvres, route planning, risk control, safety management and forewarning issues. The interaction possibility is a good method to quantify the near-miss collision risks of multi-ships. Current models, however, are mostly concerned about the movements in an unrestricted isotropic travel environment or network environment. This article simultaneously addresses these issues by developing a novel environment–kinetic compound space–time prism to capture potential spatial–temporal interactions of multi-ships in constrained dynamic environments. The approach could significantly reduce the overestimation of the individual vessel’s potential travel area and the interaction possibility of encountering vessels in restricted water. The proposed environmental–kinetical compound space–time prism (EKC-STP)-based method enables identifying where and when multi-ships possibly interacted in the constraint water area, as well as how the interaction possibility pattern changed from day to day. The collision risk evaluation results were validated through comparison with other methods. The full picture of hierarchical collision risk distribution in port areas is determined and could be employed to provide quantifiable references for efficient and practical anti-collision measures establishment.
Few empirical studies have examined the collective impact of and interplay between individual factors on collaborative outcomes during major infectious disease outbreaks and the direct and interactive effects of these factors and their underlying mechanisms. Therefore, this study investigates the effects and underlying mechanisms of emergency preparedness, support and assurance, task difficulty, organizational command, medical treatment, and epidemic prevention and protection on collaborative outcomes during major infectious disease outbreaks.
Methods
A structured questionnaire was distributed to medical personnel with experience in responding to major infectious disease outbreaks. SPSS software was used to perform the statistical analysis. Structural equation modeling was conducted using AMOS 24.0 to analyze the complex relationships among the study variables.
Results
Organizational command, medical treatment, and epidemic prevention and protection had significant and positive impacts on collaborative outcomes. Emergency preparedness and supportive measures positively impacted collaborative outcomes during health crises and were mediated through organizational command, medical treatment, and epidemic prevention and protection.
Conclusions
The results underscore the critical roles of organizational command, medical treatment, and epidemic prevention and protection in achieving positive collaborative outcomes during health crises, with emergency preparedness and supportive measures enhancing these outcomes through the same key factors.
This paper presents a millimeter-wave end-fire dual-polarized (DP) array antenna with symmetrical radiation patterns and high isolation. The DP radiation element is formed by integrating a quasi-Yagi antenna (providing horizontal polarization) into a pyramidal horn antenna (providing vertical polarization), resulting in a DP radiation element with a symmetrical radiation aperture. To efficiently feed the DP element while maintaining high isolation, a mode-composite full-corporate-feed network is employed, comprising substrate-integrated waveguide supporting the TE10 mode and substrate-integrated coaxial line supporting the TEM mode. This design eliminates the need for additional transition structures, achieving excellent mode isolation and a reduced substrate layer number. A 1 × 4-element DP array prototype operating at 26.5–29.5 GHz using low temperature co-fired ceramic technology was designed, fabricated, and measured. The test results indicate that the prototype achieves an average gain exceeding 10 dBi for both polarizations within the operating band. Thanks to the symmetrical DP radiation element and mode-composite full-corporate-feed network, symmetrical radiation patterns for both polarizations are observed in both the horizontal and vertical planes, along with a high cross-polarization discrimination of 22 dB and polarization port isolation of 35 dB.
Objectives/Goals: Physical activity (PA) is a well-documented protective factor against many cardiovascular diseases. PA guidelines to reduce these risks and the impact of variability are unclear, and most studies only examine a 7-day activity window. This study aimed to examine factors related to variability in step counts in a 3-year study of adults aged ≥18 years. Methods/Study Population: Included were 6,525 participants from the Michigan Predictive Ability and Clinical Trajectories study, a prospective cohort of community-dwelling adults enrolled between 8/14/2018 and 12/19/2019 who received care at Michigan Medicine and were followed for 3 years. Data were collected from Apple Watches provided to participants via the HealthKit. This secondary analysis included those with ≥4 valid weeks of data (≥4 days with at least 8 hours of wear time). Season was defined as Spring (March 20–June 20), Summer (June 21–September 21), Fall (September 22–December 20), and Winter (December 21–March 19). GEE models against the outcome of variability, defined as weekly standard deviation of step counts, and the predictor of season were adjusted for age, sex, race/ethnicity, weekly average step count, diabetes, and body mass index. Results/Anticipated Results: The average (standard deviation (SD) step counts by season were 7101 (3434) in Spring, 7263 (3354) in Summer, 6863 (3236) in Fall, and 6555 (3211) in Winter. Compared to winter, there was statistically significantly higher variability in all other seasons (p Discussion/Significance of Impact: In this cohort of community-dwelling adults, we found significant differences in variability of physical activity by season, age, and BMI. Future work will examine how this variability impacts the risk of development of cardiovascular disease, incorporating the impact and recovery trajectories of COVID-19 and other acute respiratory infections.
Cathepsin B (CTSB) is a cysteine protease that is widely found in eukaryotes and plays a role in insect growth, development, digestion, metamorphosis, and immunity. In the present study, we examined the role of CTSB in response to environmental stresses in Myzus persicae Sulzer (Hemiptera: Aphididae). Six MpCTSB genes, namely MpCTSB-N, MpCTSB-16D1, MpCTSB-3098, MpCTSB-10270, MpCTSB-mp2, and MpCTSB-16, were identified and cloned from M. persicae. The putative proteins encoded by these genes contained three conserved active site residues, i.e. Cys, His, and Asn. A phylogenetic tree analysis revealed that the six MpCTSB proteins of M. persicae were highly homologous to other Hemipteran insects. Real-time polymerase chain reaction revealed that the MpCTSB genes were expressed at different stages of M. persicae and highly expressed in winged adults or first-instar nymphs. The expression of nearly all MpCTSB genes was significantly upregulated under different environmental stresses (38°C, 4°C, and ultraviolet-B). This study shows that MpCTSB plays an important role in the growth and development of M. persicae and its resistance to environmental stress.
Recently, there has been a Renaissance for multi-level selection models to explain the persistence of unselfish behavior in social dilemmas, in which assortative/correlated matching plays an important role. In the current study of a multi-round prisoners’ dilemma experiment, we introduce two correlated matching procedures that match subjects with similar action histories together. We discover significant treatment effects, compared to the control procedure of random matching. Particularly with the weighted history matching procedure we find bifurcations regarding group outcomes. Some groups converge to the all-defection equilibrium even more pronouncedly than the control groups do, while other groups generate much higher rate of cooperation, which is also associated with higher relative reward for a typical cooperative action. All in all, the data show that cooperation does have a much better chance to persist in a correlated/assortative-matching environment, as predicted in the literature.
The formation process of a vortex pair generated by a two-dimensional starting jet has been investigated numerically over a range of Reynolds numbers from 500 to 2000. The effects of stroke ratio and nozzle configuration are examined. Only a single vortex pair can be observed in the vorticity field generated by small stroke ratios less than 10 while the leading vortex pair formed by larger stroke ratios eventually disconnects from the trailing jet. The formation numbers (13.6 and 9.3) for a straight nozzle and an orifice nozzle have been identified by the circulation criterion and they are further analysed by four other criteria. Using the contraction coefficient, formation numbers can be transformed into a universal value at about 16.5 for both nozzles. The effect of Reynolds number on the formation number is found to be within 12 % for parallel flow cases but it will increase up to 27 % for non-parallel flow cases due to shear-layer instability. A modified contraction-based slug model is proposed, and it can accurately predict the total invariants (e.g. circulation, hydrodynamic impulse and kinetic energy) shedding from the nozzle edge. Analytical estimation of the formation number is further conducted by matching the predicted total invariants to the Pierrehumbert model of steady vortex pairs. By assuming that pinch-off starts when the vortex pair achieves the steady state, two analytical models are proposed in terms of vortex impulse and translational velocity. The latter appears to be more appropriate to predict the formation number for two-dimensional flows.
Second-generation antipsychotics (SGAs) can cause corrected QT interval (QTc) prolongation as a side-effect. This may limit their clinical use and pose safety concerns for patients.
Aims
To analyse the risk of QTc prolongation associated with eight second-generation antipsychotics and observe the timing characteristics of QTc prolongation events and subsequent changes in medication strategies.
Methods
Using data from the hospital information system of a large mental health centre, this retrospective cohort study included 5130 patients (median follow-up: 141.2 days) treated between 2007 and 2019. A marginal structural Cox model was used to compare the hazard ratios for QTc prolongation associated with various SGAs.
Results
The mean age of the cohort was 35.54 years (s.d. = 14.22), and 47.8% (N = 2454) were male. Ziprasidone, amisulpride and olanzapine were the only SGAs associated with QTc prolongation. Ziprasidone presented the highest risk (hazard ratio 1.72, 95% CI: 1.03–2.85, adjusted P = 0.03), followed by amisulpride (hazard ratio 1.56, 95% CI: 1.04–2.34, adjusted P = 0.03) and olanzapine (hazard ratio 1.40, 95% CI: 1.02–1.94, adjusted P = 0.04).
Conclusion
Ziprasidone, amisulpride and olanzapine are associated with increased risk of QTc prolongation. Regular electrocardiogram monitoring is recommended when clinicians prescribe such drugs.
There is a lack of longitudinal data on the relationship between upward social comparison on social network sites (SNSs) and depression and its underlying mechanisms. Therefore, this study aimed to examine the relationship between upward social comparison on social network sites and depression and analyze the mediating effects of self-concept clarity and self-esteem in this relationship. We employed a two-wave longitudinal design among 1179 Chinese middle school students. The results indicated that : upward social comparison on SNSs predicted middle school students’ depression; Self-concept clarity and self-esteem sequentially mediated the relationship between upward social comparison on SNSs and middle school students’ subsequent depression. These results suggested that three types of interventions could be effectively used to decrease the risk of depression among middle school students.
The formation mechanism for the stopping vortex ring (SVR) and its effects on the development of starting jets have been systematically investigated. The radial inward flow near the nozzle exit, arising from the pressure difference caused by the deceleration of starting jets, is considered to be the main contributing factor to the formation of the SVR. The formation process can generally be divided into (i) the rapid accumulation stage ($t_d^*\leq 1$) and (ii) the development stage ($t_d^*>1$), where $t_d^*$ is the formation time defined by the duration of the deceleration stage. For starting jets with different $(L/D)_d$, the final circulation value and circulation growth rate of the SVR can be scaled by $[(L/D)_d]^{-0.5}$ and $[(L/D)_d]^{-1.5}$, respectively. Here $(L/D)_d$ represents the stroke ratio during the deceleration stage. Analysing the temporal evolution of fluid parcels in the vicinity of the nozzle exit reveals that SVR entrains fluid from both inside and outside of the nozzle. Additionally, the influence of the SVR on the leading vortex ring and the trailing jet has been examined, with particular attention to its effects on the propulsive performance of the starting jet. The SVR affects the profiles of axial velocity and gauge pressure at the nozzle exit, thereby enhancing the generation of total thrust during the deceleration stage. Analysis has shown that depending on the deceleration rate, SVR can enhance the average velocity thrust by at least $10\,\%$ and compensate for up to a $60\,\%$ reduction in pressure thrust due to deceleration.
The discovery that blazars dominate the extra-galactic $\gamma$-ray sky is a triumph in the Fermi era. However, the exact location of $\gamma$-ray emission region still remains in debate. Low-synchrotron-peaked blazars (LSPs) are estimated to produce high-energy radiation through the external Compton process, thus their emission regions are closely related to the external photon fields. We employed the seed factor approach proposed by Georganopoulos et al. It directly matches the observed seed factor of each LSP with the characteristic seed factors of external photon fields to locate the $\gamma$-ray emission region. A sample of 1 138 LSPs with peak frequencies and peak luminosities was adopted to plot a histogram distribution of observed seed factors. We also collected some spectral energy distributions (SEDs) of historical flare states to investigate the variation of $\gamma$-ray emission region. Those SEDs were fitted by both quadratic and cubic functions using the Markov-chain Monte Carlo method. Furthermore, we derived some physical parameters of blazars and compared them with the constraint of internal $\gamma\gamma$-absorption. We find that dusty torus dominates the soft photon fields of LSPs and most $\gamma$-ray emission regions of LSPs are located at 1–10 pc. The soft photon fields could also transition from dusty torus to broad line region and cosmic microwave background in different flare states. Our results suggest that the cubic function is better than the quadratic function to fit the SEDs.
To develop more economical and efficient heavy metal adsorbents, natural bentonite was employed as a raw material, and triethoxyvinylsilane served as a grafting agent to achieve the grafting bonding of sodium polyacrylate and bentonite. Structural alterations in the modified bentonite were analyzed through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The adsorption and desorption characteristics of SAPAS-Bentonite and raw bentonite were compared and tested under various conditions, including time, temperature, pH, and lead ion concentration. The adsorption and desorption properties of sodium polyacrylate-grafted bentonite (SAPAS-Bentonite) were compared under various conditions (time, temperature, pH, and lead ion concentration). The results revealed that the modified method successfully achieved nano-scale coating of bentonite particles with sodium polyacrylate, leading to an increase in the maximum adsorption capacity of lead ions by 47.5%, reaching 165.73 mg g. A greater adsorption affinity for lead ions was exhibited by the outer sodium polycarboxylate portion of SAPAS-Bentonite compared with the inner bentonite. The adsorption of internal bentonite was limited by blocking when the adsorption of sodium polyacrylate did not reach the upper limit. The adsorption isotherm shifted from the Langmuir monolayer characteristic of the original bentonite to the S-shaped isotherm, reflecting the sodium polycarboxylate properties of SAPAS-Bentonite. Both bentonites demonstrated strong retention capacity for lead, with SAPAS-Bentonite surpassing raw bentonite in performance. This study provides valuable insights into the potential of SAPAS-Bentonite in the treatment of heavy metal pollution.
Seed germination is a pivotal period of plant growth and development. This process can be divided into four major stages, swelling absorption, seed coat dehiscence, radicle emergence and radicle elongation. Cupressus gigantea, a tree native to Tibet, China, is characterized by its resistance to stresses such as cold, and drought, and has a high economic and ecological value. Nevertheless, given its unique geographic location, its seeds are difficult to germinate. Therefore, it is crucial to explore the mechanisms involved in seed germination in this species to improve the germination efficiency of its seeds, thereby protecting this high-quality resource. Here, our findings indicate that seed germination was enhanced when exposed to a 6-h/8-h light/dark photoperiod, coupled with a temperature of 20°C. Furthermore, the application of exogenous GA3 (1 mg/ml, about 2.9 mM) stimulated the germination of C. gigantea seeds. Subsequently, proteomics was used to detect changes in protein expression during the four stages of seed germination. We identified 34 differentially expressed proteins (DEPs), including 13 at the radicle pre-emergence stage, and 17 at the radicle elongation stage. These DEPs were classified into eight functional groups, cytoskeletal proteins, energy metabolism, membrane transport, stress response, molecular chaperones, amino acid metabolism, antioxidant system and ABA signalling pathway. Most of them were found to be closely associated with amino acid metabolism. Combined, these findings indicate that, along with temperature and light, exogenous GA3 can increase the germination efficiency of C. gigantea seeds. Our study also offers insights into the changes in protein expression patterns in C. gigantea seeds during germination.
Water droplets containing the SARS-CoV-2 virus, responsible for coronavirus 2019 transmission, were introduced into a controlled-temperature and -humidity chamber. The SARS-CoV-2 virus with green fluorescent protein tag in droplets was used to infect Caco-2 cells, with viability assessed through flow cytometry and microscopic counting. Whereas temperature fluctuations within typical indoor ranges (20°C–30°C) had minimal impact, we observed a notable decrease in infection rate as the surrounding air’s relative humidity increased. By investigating humidity levels between 20% and 70%, we identified a threshold of ≥40% relative humidity as most effective in diminishing SARS-CoV-2 infectivity. We also found that damage of the viral proteins under high relative humidity may be responsible for the decrease in their activity. This outcome supports previous research demonstrating a rise in the concentration of reactive oxygen species within water droplets with elevated relative humidity.
In two-dimensional (2D) electron systems, the viscous flow is dominant when electron-electron collisions occur more frequently than the impurity or phonon scattering. In this work, a quantum hydrodynamic model, considering viscosity, is proposed to investigate the interaction of a charged particle moving above the two-dimensional viscous electron gas. The stopping power, perturbed electron gas density, and the spatial distribution of the velocity vector field have been theoretically analyzed and numerically calculated. The calculation results show that viscosity affects the spatial distribution and amplitude of the velocity field. The stopping power, which is an essential quantity for describing the interactions of ions with the 2D electron gas, is calculated, indicating that the incident particle will suffer less energy loss due to the weakening of the dynamic electron polarization and induced electric field in 2D electron gas with the viscosity. The values of the stopping power may be more accurate after considering the effect of viscosity. Our results may open up new possibilities to control the interaction of ions with 2D electron gas in the surface of metal or semiconductor heterostructure by variation of the viscosity.
Energy loss of protons with 90 and 100 keV energies penetrating through a hydrogen plasma target has been measured, where the electron density of the plasma is about 1016 cm−3 and the electron temperature is about 1-2 eV. It is found that the energy loss of protons in the plasma is obviously larger than that in cold gas and the experimental results based on the Bethe model calculations can be demonstrated by the variation of effective charge of protons in the hydrogen plasma. The effective charge remains 1 for 100 keV protons, while the value for 90 keV protons decreases to be about 0.92. Moreover, two empirical formulae are employed to extract the effective charge.
In this work, the dynamics of two-dimensional rotating Janus drops in shear flow is studied numerically using a ternary-fluid diffuse interface method. The rotation of Janus drops is found to be closely related to their deformation. A new deformation parameter $D$ is proposed to assess the significance of the drop deformation. According to the maximum value of $D$ ($D_{max}$), the deformation of rotating Janus drops can be classified into linear deformation ($D_{max}\le 0.2$) and nonlinear deformation ($D_{max}> 0.2$). In particular, $D_{max}$ in the former depends linearly on the Reynolds and capillary numbers, which can be interpreted by a mass–spring model. Furthermore, the rotation period $t_R$ of a Janus drop is found to be more sensitive to the drop deformation than to the aspect ratio of the drop at equilibrium. By introducing a corrected shear rate and an aspect ratio of drop deformation, a rotation model for Janus drops is established based on Jeffery's theory for rigid particles, and it agrees well with our numerical results.
This study assesses the difference in professional attitudes among medical students, both before and after coronavirus disease 2019 (COVID-19), and identifies the determinants closely associated with it, while providing precise and scientific evidence for implementing precision education on such professional attitudes.
Methods:
A pre-post-like study was conducted among medical students in 31 provinces in mainland China, from March 23, to April 19, 2021.
Results:
The proportion of medical students whose professional attitudes were disturbed after the COVID-19 pandemic, was significantly lower than before the COVID-19 pandemic (χ2 = 15.6216; P < 0.0001). Compared with the “undisturbed -undisturbed” group, the “undisturbed-disturbed” group showed that there was a 1.664-fold risk of professional attitudes disturbed as grade increased, 3.269-fold risk when others suggested they choose a medical career rather than their own desire, and 7.557-fold risk for students with COVID-19 in their family, relatives, or friends; while the “disturbed-undisturbed” group showed that students with internship experience for professional attitudes strengthened was 2.933-fold than those without internship experience.
Conclusions:
The professional attitudes of medical students have been strengthened during the COVID-19 pandemic. The results provide evidence of the importance of education on professional attitudes among medical students during public health emergencies.
Our previous studies have suggested that spastin, which aggregates on spindle microtubules in oocytes, may promote the assembly of mouse oocyte spindles by cutting microtubules. This action may be related to CRMP5, as knocking down CRMP5 results in reduced spindle microtubule density and maturation defects in oocytes. In this study, we found that, after knocking down CRMP5 in oocytes, spastin distribution shifted from the spindle to the spindle poles and errors in microtubule–kinetochore attachment appeared in oocyte spindles. However, CRMP5 did not interact with the other two microtubule-severing proteins, katanin-like-1 (KATNAL1) and fidgetin-like-1 (FIGNL1), which aggregate at the spindle poles. We speculate that, in oocytes, due to the reduction of spastin distribution on chromosomes after knocking down CRMP5, microtubule–kinetochore errors cannot be corrected through severing, resulting in meiotic division abnormalities and maturation defects in oocytes. This finding provides new insights into the regulatory mechanisms of spastin in oocytes and important opportunities for the study of meiotic division mechanisms.