We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Haemonchus contortus is a parasitic nematode that causes significant economic losses in ruminant livestock worldwide. In this study, we assessed the global genetic diversity and population structure of H. contortus using mitochondrial COX1 and ribosomal ITS2 sequences retrieved from the NCBI GenBank database. In total, 324 haplotypes of the COX1 and 72 haplotypes of the ITS2 were identified. The haplotype diversity values were all higher than 0.5, and the nucleotide diversity values were higher than 0.005. The Tajima’s D value for COX1 (−1.65634) was higher than that for ITS2 (−2.60400). Fu’s Fs, Fu and Li’s D (FLD), and Fu and Li’s F (FLF) values also showed high negative values, indicating a high probability of future population growth. In addition, the high fixation index (FST) value suggests significant genetic differentiation among populations. The haplotype networks of H. contortus populations based on COX1 sequences revealed clear geographic clustering, whereas ITS2 sequences showed more haplotype admixture across regions. The results of phylogenetic analyses were consistent with the haplotype networks. These findings highlighted that H. contortus populations exhibit significant genetic variation and are undergoing rapid population expansion, with clear genetic differences across geographic regions. This study established critical baseline data for future molecular epidemiology studies, which could guide region-specific parasite surveillance and targeted control strategies, thus helping to mitigate the risk of cross-border parasite transmission and drug resistance.
During the investigation of parasitic pathogens of Mytilus coruscus, infection of a Perkinsus-like protozoan parasite was detected by alternative Ray's Fluid Thioglycolate Medium (ARFTM). The diameter of hypnospores or prezoosporangia was 8–27 (15.6 ± 4.0, n = 111) μm. The prevalence of the Perkinsus-like species in M. coruscus was 25 and 12.5% using ARFTM and PCR, respectively. The ITS1-5.8S-ITS2 fragments amplified by PCR assay had 100% homology to that of P. beihaiensis, suggesting that the protozoan parasite was P. beihaisensis and M. coruscus was its new host in East China Sea (ECS). Histological analysis showed the presence of trophozoites of P. beihaiensis in gill, mantle and visceral mass, and the schizonts only found in visceral mass. Perkinsus beihaiensis infection led to inflammatory reaction of hemocyte and the destruction of digestive tubules in visceral mass, which had negative effect on health of the farmed M. coruscus and it deserves more attention.
The status of the genera Euparagonimus Chen, 1963 and Pagumogonimus Chen, 1963 relative to Paragonimus Braun, 1899 was investigated using DNA sequences from the mitochondrial cytochrome c oxidase subunit I (CO1) gene (partial) and the nuclear ribosomal DNA second internal transcribed spacer (ITS2). In the phylogenetic trees constructed, the genus Pagumogonimus is clearly not monophyletic and therefore not a natural taxon. Indeed, the type species of Pagumogonimus,P. skrjabini from China, is very closely related to Paragonimusmiyazakii from Japan. The status of Euparagonimus is less obvious. Euparagonimus cenocopiosus lies distant from other lungflukes included in the analysis. It can be placed as sister to Paragonimus in some analyses and falls within the genus in others. A recently published morphological study placed E. cenocopiosus within the genus Paragonimus and probably this is where it should remain.
Competition among the two-plasmon decay (TPD) of backscattered light of stimulated Raman scattering (SRS), filamentation of the electron-plasma wave (EPW) and forward side SRS is investigated by two-dimensional particle-in-cell simulations. Our previous work [K. Q. Pan et al., Nucl. Fusion 58, 096035 (2018)] showed that in a plasma with the density near 1/10 of the critical density, the backscattered light would excite the TPD, which results in suppression of the backward SRS. However, this work further shows that when the laser intensity is so high ($>{10}^{16}$ W/cm2) that the backward SRS cannot be totally suppressed, filamentation of the EPW and forward side SRS will be excited. Then the TPD of the backscattered light only occurs in the early stage and is suppressed in the latter stage. Electron distribution functions further show that trapped-particle-modulation instability should be responsible for filamentation of the EPW. This research can promote the understanding of hot-electron generation and SRS saturation in inertial confinement fusion experiments.
The target backsheath field acceleration mechanism is one of the main mechanisms of laser-driven proton acceleration (LDPA) and strongly depends on the comprehensive performance of the ultrashort ultra-intense lasers used as the driving sources. The successful use of the SG-II Peta-watt (SG-II PW) laser facility for LDPA and its applications in radiographic diagnoses have been manifested by the good performance of the SG-II PW facility. Recently, the SG-II PW laser facility has undergone extensive maintenance and a comprehensive technical upgrade in terms of the seed source, laser contrast and terminal focus. LDPA experiments were performed using the maintained SG-II PW laser beam, and the highest cutoff energy of the proton beam was obviously increased. Accordingly, a double-film target structure was used, and the maximum cutoff energy of the proton beam was up to 70 MeV. These results demonstrate that the comprehensive performance of the SG-II PW laser facility was improved significantly.
As a typical plasma-based optical element that can sustain ultra-high light intensity, plasma density gratings driven by intense laser pulses have been extensively studied for wide applications. Here, we show that the plasma density grating driven by two intersecting driver laser pulses is not only nonuniform in space but also varies over time. Consequently, the probe laser pulse that passes through such a dynamic plasma density grating will be depolarized, that is, its polarization becomes spatially and temporally variable. More importantly, the laser depolarization may spontaneously take place for crossed laser beams if their polarization angles are arranged properly. The laser depolarization by a dynamic plasma density grating may find application in mitigating parametric instabilities in laser-driven inertial confinement fusion.
In the present study, we investigated the influence of different mid-stage N compensation timings on agronomic and physiological traits associated with grain yield and quality in field experiments. Two japonica rice cultivars with a good tasting quality (Nangeng 9108 and Nangeng 5055) were examined under eight N compensation timings (N1–N6: one-time N compensation at 7-2 weeks before heading; N7: split N compensation at 5 and 3 weeks before heading; N8: split N compensation at 4 and 2 weeks before heading) and a control with no N compensation. The highest yield was obtained with N7, followed by N3. The yield advantage is mainly attributable to the improved population structure (higher productive tiller rate with a stable number of effective panicles), higher total number of spikelets per unit area (large panicles with more grains per panicle), larger leaf area index in the late period and higher photosynthetic production capacity (more dry matter accumulation and transportation in the middle and late periods). Delaying N compensation timing improved the processing and nutritional quality of rice, but decreased the quality of appearance and cooking/eating traits. Our results suggest that, from the perspective of achieving relative coordination between high yield and high quality of japonica rice, the optimal N compensation should be divided equally at 5 and 3 weeks before heading. However, if simplifying the number of operations and the pursuit of eating quality were considered, one-time N compensation should be conducted at 5 weeks before heading.
This study aimed to determine the distribution and subcellular localisation of aquaporin 2 and vasopressin type 2 receptor in the human endolymphatic sac.
Methods
Ten samples of human endolymphatic sac were collected during acoustic neurinoma removal using the translabyrinthine approach. Immunohistochemistry and immunofluorescence were performed using aquaporin 2 and vasopressin type 2 receptor monoclonal antibodies.
Results
Confocal microscopy demonstrated that vasopressin type 2 receptor labelling was expressed in both the apical and basolateral plasma membranes, and in the cytoplasm of the endolymphatic sac epithelium, whereas aquaporin 2 was strongly expressed at the basolateral site of the endolymphatic sac epithelium, in both the intraosseous and extraosseous parts of the endolymphatic sac.
Conclusion
Both aquaporin 2 and vasopressin type 2 receptor were detected in the epithelial cells of the human endolymphatic sac, suggesting that this channel may be involved in inner-ear fluid homeostasis. However, strong basolateral expression of aquaporin 2 in endolymphatic sac epithelium suggested that the function of aquaporin 2 may differ between the endolymphatic sac and kidney.
The great demographic pressure brings tremendous volume of beef demand. The key to solve this problem is the growth and development of Chinese cattle. In order to find molecular markers conducive to the growth and development of Chinese cattle, sequencing was used to determine the position of copy number variations (CNVs), bioinformatics analysis was used to predict the function of ZNF146 gene, real-time fluorescent quantitative polymerase chain reaction (qPCR) was used for CNV genotyping and one-way analysis of variance was used for association analysis. The results showed that there exists CNV in Chr 18: 47225201-47229600 (5.0.1 version) of ZNF146 gene through the early sequencing results in the laboratory and predicted ZNF146 gene was expressed in liver, skeletal muscle and breast cells, and was amplified or overexpressed in pancreatic cancer, which promoted the development of tumour through bioinformatics. Therefore, it is predicted that ZNF146 gene affects the proliferation of muscle cells, and then affects the growth and development of cattle. Furthermore, CNV genotyping of ZNF146 gene was three types (deletion type, normal type and duplication type) by Real-time fluorescent quantitative PCR (qPCR). The association analysis results showed that ZNF146-CNV was significantly correlated with rump length of Qinchuan cattle, hucklebone width of Jiaxian red cattle and heart girth of Yunling cattle. From the above results, ZNF146-CNV had a significant effect on growth traits, which provided an important candidate molecular marker for growth and development of Chinese cattle.
We report the experimental results of the commissioning phase in the 10 PW laser beamline of the Shanghai Superintense Ultrafast Laser Facility (SULF). The peak power reaches 2.4 PW on target without the last amplifying during the experiment. The laser energy of 72 ± 9 J is directed to a focal spot of approximately 6 μm diameter (full width at half maximum) in 30 fs pulse duration, yielding a focused peak intensity around 2.0 × 1021 W/cm2. The first laser-proton acceleration experiment is performed using plain copper and plastic targets. High-energy proton beams with maximum cut-off energy up to 62.5 MeV are achieved using copper foils at the optimum target thickness of 4 μm via target normal sheath acceleration. For plastic targets of tens of nanometers thick, the proton cut-off energy is approximately 20 MeV, showing ring-like or filamented density distributions. These experimental results reflect the capabilities of the SULF-10 PW beamline, for example, both ultrahigh intensity and relatively good beam contrast. Further optimization for these key parameters is underway, where peak laser intensities of 1022–1023 W/cm2 are anticipated to support various experiments on extreme field physics.
To summarise and describe the clinical presentations, diagnostic approaches and airway management techniques in children with laryngotracheal trauma.
Methods
The clinical data related to laryngotracheal trauma diagnosed and treated at the Beijing Children's Hospital, between January 2013 and July 2018, were retrospectively reviewed. Disease diagnosis, treatment, management and outcomes were analysed.
Results
A total of 13 cases were enrolled, including 7 cases of penetrating laryngotracheal trauma. The six cases of blunt laryngotracheal trauma were caused by collisions with hard objects. In all cases, voice, airway and swallowing outcomes were graded as ‘good’, except for one patient who had residual paralysis of the vocal folds.
Conclusion
Flexible fibre-optic laryngoscopy and computed tomography can play an important role in diagnosing laryngotracheal trauma. The airway should be secured and, if necessary, opened by tracheal intubation or tracheostomy.
There is a lack of evidence related to the prevalence of mental health symptoms as well as their heterogeneities during the coronavirus disease 2019 (COVID-19) pandemic in Latin America, a large area spanning the equator. The current study aims to provide meta-analytical evidence on mental health symptoms during COVID-19 among frontline healthcare workers, general healthcare workers, the general population and university students in Latin America.
Methods
Bibliographical databases, such as PubMed, Embase, Web of Science, PsycINFO and medRxiv, were systematically searched to identify pertinent studies up to August 13, 2021. Two coders performed the screening using predefined eligibility criteria. Studies were assigned quality scores using the Mixed Methods Appraisal Tool. The double data extraction method was used to minimise data entry errors.
Results
A total of 62 studies with 196 950 participants in Latin America were identified. The pooled prevalence of anxiety, depression, distress and insomnia was 35%, 35%, 32% and 35%, respectively. There was a higher prevalence of mental health symptoms in South America compared to Central America (36% v. 28%, p < 0.001), in countries speaking Portuguese (40%) v. Spanish (30%). The pooled prevalence of mental health symptoms in the general population, general healthcare workers, frontline healthcare workers and students in Latin America was 37%, 34%, 33% and 45%, respectively.
Conclusions
The high yet heterogenous level of prevalence of mental health symptoms emphasises the need for appropriate identification of psychological interventions in Latin America.
Frequent freezing injury greatly influences winter wheat production; thus, effective prevention and a command of agricultural production are vital. The freezing injury monitoring method integrated with ‘3S’ (geographic information systems (GIS), global positioning system (GPS) and remote sensing (RS)) technology has an unparalleled advantage. Using HuanJing (HJ)-1A/1B satellite images of a winter wheat field in Shanxi Province, China plus a field survey, crop types and winter wheat planting area were identified through repeated visual interpretations of image information and spatial analyses conducted in GIS. Six vegetation indices were extracted from processed HJ-1A/1B satellite images to determine whether the winter wheat suffered from freezing injury and its degree of severity and recovery, using change vector analysis (CVA), the freeze injury representative vegetation index and the combination of the two methods, respectively. Accuracy of the freezing damage classification results was verified by determining the impact of freezing damage on yield and quantitative analysis. The CVA and the change of normalized difference vegetation index (ΔNDVI) monitoring results were different so a comprehensive analysis of the combination of CVA and ΔNDVI was performed. The area with serious freezing injury covered 0.9% of the total study area, followed by the area of no freezing injury (3.5%), moderate freezing injury (10.2%) and light freezing injury (85.4%). Of the moderate and serious freezing injury areas, 0.2% did not recover; 1.2% of the no freezing injury and light freezing injury areas showed optimal recovery, 15.6% of the light freezing injury and moderate freezing injury areas showed poor recovery, and the remaining areas exhibited general recovery.
For the safety problems caused by the limited landing space of the deck during the arresting process of the carrier-based aircraft, a dynamic model of the carrier-based aircraft’s landing and arresting is built. Based on the batch simulation method, the lateral dynamics safety envelope of the aircraft during the arresting was defined, and the dynamic response of the key points in the envelope during the arresting process was investigated. Subsequently, the influence of engine thrust and aircraft quality on the arresting safety envelope was studied based on reasonable safety evaluation indicators, and the safety status envelope of the deck arresting was given. Then, the particular Hamilton-Jacobi partial differential equation is used to obtain the lateral dynamics safety envelope of the carrier-based aircraft in the process of landing and arresting by backward inversion. Results indicate that engine thrust and landing quality have little effect on the yaw angle in the arresting safety boundary during the arresting. Additionally, with the engine thrust and landing quality increase, the maximum safe off-centre distance gradually decreases, and the safety boundary decreases accordingly. During the phase of landing glide, the engine thrust and quality have little effect on the maximum safe eccentric distance. When the engine thrust is increased by 40%, the maximum safe yaw angle is reduced from 0.3°, and the safety boundary is reduced by 4.2%. When the aircraftquality increases by 40%, the maximum safe yaw angle is reduced by 0.4°, and the safety boundary is reduced by 2.8%. The findings of this paper can provide framework for the research on theaircraft-to-carrier dynamic matching characteristics of the carrier-based system, and is of great significance to the research on improving the safety of the carrier-based aircraft landing arresting.
We report on experimental observation of non-laminar proton acceleration modulated by a strong magnetic field in laser irradiating micrometer aluminum targets. The results illustrate the coexistence of ring-like and filamentation structures. We implement the knife edge method into the radiochromic film detector to map the accelerated beams, measuring a source size of 30–110 μm for protons of more than 5 MeV. The diagnosis reveals that the ring-like profile originates from low-energy protons far off the axis whereas the filamentation is from the near-axis high-energy protons, exhibiting non-laminar features. Particle-in-cell simulations reproduced the experimental results, showing that the short-term magnetic turbulence via Weibel instability and the long-term quasi-static annular magnetic field by the streaming electric current account for the measured beam profile. Our work provides direct mapping of laser-driven proton sources in the space-energy domain and reveals the non-laminar beam evolution at featured time scales.
Pneumatic launch systems for Unmanned Aerial Vehicles (UAVs), including mechanical and pneumatic systems, are complex and non-linear. They are subjected to system parameters during launch, which leads to difficulty in engineering research analysis. For example, the mismatch between the UAV parameters and the parameter design indices of the launch system as well as the unclear design indices of the launching speed and overload of UAVs have a great impact on launch safety. Considering this situation, some studies are presented in this paper. Taking the pneumatic launch system as a research object, a pneumatic launcher dynamic simulation model is built based on co-simulation considering the coupling characteristics of the mechanical structure and transmission system. Its accuracy was verified by laboratory test results. Based on this model, the paper shows the effects of the key parameters, including the mass of the UAV, cylinder volume, pressure and moment of inertia of the pulley block, on the performance of the dynamic characteristics of the launch process. Then, a method for matching the parameter characteristics between the UAV and launch system based on batch simulation is proposed. The set of matching parameter values of the UAV and launch system that satisfy the launch take-off safety criteria are calculated. Finally, the influence of the system parameters of the launch process on the launch performance was analysed in detail, and the design optimised. Meaningful conclusions were obtained. The analysis method and its results can provide a reference for engineering and theoretical research and development of pneumatic launch systems.
Carrier-based unmanned aerial aircraft (UAV) structure is subjected to severe tensile load during takeoff, especially the drawbar, which affects its fatigue performance and structural safety. However, the complex structural features pose great challenges for the engineering design. Considering this situation, a structural design, fatigue analysis, and parameters optimisation joint working platform are urgently needed to solve this problem. In this study, numerical analysis of strain fatigue is carried out based on the laboratory fatigue failure of the carrier-based aircraft drawbar. Taking the sensitivity of drawbar parameters to stress and life into account and optimum design of drawbar with fatigue life as a target using the parametric method, this study also includes cutting-edge parameters of milling cutters, structural details of the drawbar and so on. Then an experimental design is applied using the Latin hypercube sampling method, and a surrogate model based on RBF neural network is established. Lastly, a multi-island genetic algorithm is introduced for optimisation. The results show that the error between the obtained optimal solution and simulation is 0.26%, while the optimised stress level is reduced by 15.7%, and the life of the drawbar is increased by 122%.
The aim of this study was to explore the frequency and distribution of gene mutations that are related to isoniazid (INH) and rifampin (RIF)-resistance in the strains of the multidrug-resistant tuberculosis (MDR-TB) Mycobacterium tuberculosis (M.tb) in Beijing, China. In this retrospective study, the genotypes of 173 MDR-TB strains were analysed by spoligotyping. The katG, inhA genes and the promoter region of inhA, in which genetic mutations confer INH resistance; and the rpoB gene, in which genetic mutations confer RIF resistance, were sequenced. The percentage of resistance-associated nucleotide alterations among the strains of different genotypes was also analysed. In total, 90.8% (157/173) of the MDR strains belonged to the Beijing genotype. Population characteristics were not significantly different among the strains of different genotypes. In total, 50.3% (87/173) strains had mutations at codon S315T of katG; 16.8% (29/173) of strains had mutations in the inhA promoter region; of them, 5.5% (15/173) had point mutations at −15 base (C→T) of the inhA promoter region. In total, 86.7% (150/173) strains had mutations at rpoB gene; of them, 40% (69/173) strains had mutations at codon S531L of rpoB. The frequency of mutations was not significantly higher in Beijing genotypic MDR strains than in non-Beijing genotypes. Beijing genotypic MDR-TB strains were spreading in Beijing and present a major challenge to TB control in this region. A high prevalence of katG Ser315Thr, inhA promoter region (−15C→T) and rpoB (S531L) mutations was observed. Molecular diagnostics based on gene mutations was a useful method for rapid detection of MDR-TB in Beijing, China.