To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We discuss several ways of packing a hyperbolic surface with circles (of either varying radii or all being congruent) or horocycles, and note down some observations related to their symmetries (or the absence thereof).
We develop the relationship between quaternionic hyperbolic geometry and arithmetic counting or equidistribution applications, that arises from the action of arithmetic groups on quaternionic hyperbolic spaces, especially in dimension 2. We prove a Mertens counting formula for the rational points over a definite quaternion algebra A over ${\mathbb{Q}}$ in the light cone of quaternionic Hermitian forms, as well as a Neville equidistribution theorem of the set of rational points over A in quaternionic Heisenberg groups.
We prove a theorem describing the limiting fine-scale statistics of orbits of a point in hyperbolic space under the action of a discrete subgroup. Similar results have been proved only in the lattice case with two recent infinite-volume exceptions by Zhang for Apollonian circle packings and certain Schottky groups. Our results hold for general Zariski dense, non-elementary, geometrically finite subgroups in any dimension. Unlike in the lattice case orbits of geometrically finite subgroups do not necessarily equidistribute on the whole boundary of hyperbolic space. But rather they may equidistribute on a fractal subset. Understanding the behavior of these orbits near the boundary is central to Patterson–Sullivan theory and much further work. Our theorem characterises the higher order spatial statistics and thus addresses a very natural question. As a motivating example our work applies to sphere packings (in any dimension) which are invariant under the action of such discrete subgroups. At the end of the paper we show how this statistical characterization can be used to prove convergence of moments and to write down the limiting formula for the two-point correlation function and nearest neighbor distribution. Moreover we establish a formula for the 2 dimensional limiting gap distribution (and cumulative gap distribution) which also applies in the lattice case.
The topic of this course is the discrete subgroups of semisimple Lie groups. We discuss a criterion that ensures that such a subgroup is arithmetic. This criterion is a joint work with Sébastien Miquel, which extends previous work of Selberg and Hee Oh and solves an old conjecture of Margulis. We focus on concrete examples like the group$\mathrm {SL}(d,{\mathbb {R}})$ and we explain how classical tools and new techniques enter the proof: the Auslander projection theorem, the Bruhat decomposition, the Mahler compactness criterion, the Borel density theorem, the Borel–Harish-Chandra finiteness theorem, the Howe–Moore mixing theorem, the Dani–Margulis recurrence theorem, the Raghunathan–Venkataramana finite-index subgroup theorem and so on.
Higher dimensional analogues of the modular group $\mathit{PSL}(2,\mathbb{Z})$ are closely related to hyperbolic reflection groups and Coxeter polyhedra with big symmetry groups. In this context, we develop a theory and dissection properties of ideal hyperbolic $k$-rectified regular polyhedra, which is of independent interest. As an application, we can identify the covolumes of the quaternionic modular groups with certain explicit rational multiples of the Riemann zeta value $\unicode[STIX]{x1D701}(3)$.
A question of Griffiths–Schmid asks when the monodromy group of an algebraic family of complex varieties is arithmetic. We resolve this in the affirmative for a class of algebraic surfaces known as Atiyah–Kodaira manifolds, which have base and fibers equal to complete algebraic curves. Our methods are topological in nature and involve an analysis of the ‘geometric’ monodromy, valued in the mapping class group of the fiber.
We determine the index of five of the seven hypergeometric Calabi–Yau operators that have finite index in $\mathit{Sp}_{4}(\mathbb{Z})$ and in two cases give a complete description of the monodromy group. Furthermore, we find six nonhypergeometric Calabi–Yau operators with finite index in $\mathit{Sp}_{4}(\mathbb{Z})$, most notably a case where the index is one.
We describe algorithms that allow the computation of fundamental domains in the Bruhat–Tits tree for the action of discrete groups arising from quaternion algebras. These algorithms are used to compute spaces of rigid modular forms of arbitrary even weight, and we explain how to evaluate such forms to high precision using overconvergent methods. Finally, these algorithms are applied to the calculation of conjectural equations for the canonical embedding of p-adically uniformizable rational Shimura curves. We conclude with an example in the case of a genus 4 Shimura curve.
We consider the 33 conjugacy classes of genus zero, torsion-free modular subgroups, computing ramification data and Grothendieck’s dessins d’enfants. In the particular case of the index 36 subgroups, the corresponding Calabi–Yau threefolds are identified, in analogy with the index 24 cases being associated to K3 surfaces. In a parallel vein, we study the 112 semi-stable elliptic fibrations over ${ \mathbb{P} }^{1} $ as extremal K3 surfaces with six singular fibres. In each case, a representative of the corresponding class of subgroups is identified by specifying a generating set for that representative.
The normal residual finiteness growth of a group quantifies how well approximated the group is by its finite quotients. We show that any S-arithmetic subgroup of a higher rank Chevalley group G has normal residual finiteness growth ndim (G).
It is well known that if a convex hyperbolic polygon is constructed as a fundamental domain for a subgroup of SL(2,ℝ), then its translates by the group form a locally finite tessellation and its side-pairing transformations form a system of generators for the group. Such a hyperbolically convex fundamental domain for any discrete subgroup can be obtained by using Dirichlet’s and Ford’s polygon constructions. However, these two results are not well adapted for the actual construction of a hyperbolically convex fundamental domain due to their nature of construction. A third, and most important and practical, method of obtaining a fundamental domain is through the use of a right coset decomposition as described below. If Γ2 is a subgroup of Γ1 such that Γ1=Γ2⋅{L1,L2,…,Lm} and 𝔽 is the closure of a fundamental domain of the bigger group Γ1, then the set is a fundamental domain of Γ2. One can ask at this juncture, is it possible to choose the right coset suitably so that the set ℛ is a convex hyperbolic polygon? We will answer this question affirmatively for Hecke modular groups.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.