We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We determine the asymptotic behavior of the coefficients of Hecke polynomials. In particular, this allows us to determine signs of these coefficients when the level or the weight is sufficiently large. In all but finitely many cases, this also verifies a conjecture on the nanvanishing of the coefficients of Hecke polynomials.
Let p and $\ell $ be primes such that $p> 3$ and $p \mid \ell -1$ and k be an even integer. We use deformation theory of pseudo-representations to study the completion of the Hecke algebra acting on the space of cuspidal modular forms of weight k and level $\Gamma _0(\ell )$ at the maximal Eisenstein ideal containing p. We give a necessary and sufficient condition for the $\mathbb {Z}_p$-rank of this Hecke algebra to be greater than $1$ in terms of vanishing of the cup products of certain global Galois cohomology classes. We also recover some of the results proven by Wake and Wang-Erickson for $k=2$ using our methods. In addition, we prove some $R=\mathbb {T}$ theorems under certain hypotheses.
We settle a part of the conjecture by Bandini and Valentino [‘On the structure and slopes of Drinfeld cusp forms’, Exp. Math.31(2) (2022), 637–651] for $S_{k,l}(\Gamma _0(T))$ when $\mathrm {dim}\ S_{k,l}(\mathrm {GL}_2(A))\leq 2$. We frame and check the conjecture for primes $\mathfrak {p}$ and higher levels $\mathfrak {p}\mathfrak {m}$, and show that a part of the conjecture for level $\mathfrak {p} \mathfrak {m}$ does not hold if $\mathfrak {m}\ne A$ and $(k,l)=(2,1)$.
We use a linear algebra interpretation of the action of Hecke operators on Drinfeld cusp forms to prove that when the dimension of the $\mathbb {C}_\infty $-vector space $S_{k,m}(\mathrm {{GL}}_2(\mathbb {F}_q[t]))$ is one, the Hecke operator $\mathbf {T}_t$ is injective on $S_{k,m}(\mathrm {{GL}}_2(\mathbb {F}_q[t]))$ and $S_{k,m}(\Gamma _0(t))$ is a direct sum of oldforms and newforms.
We present a ready to compute trace formula for Hecke operators on vector-valuedmodular forms of integral weight for SL2(ℤ) transforming under the Weil representation. As a corollary, we obtain a ready to compute dimension formula for the corresponding space of vector-valued cusp forms, which is more general than the dimension formulae previously published in the vector-valued setting.
In this paper, we study the structure of the local components of the (shallow, i.e. without $U_{p}$) Hecke algebras acting on the space of modular forms modulo $p$ of level $1$, and relate them to pseudo-deformation rings. In many cases, we prove that those local components are regular complete local algebras of dimension $2$, generalizing a recent result of Nicolas and Serre for the case $p=2$.
Let $p\geqslant 5$ be a prime. If an irreducible component of the spectrum of the ‘big’ ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its Galois representation contains, up to finite error, a principal congruence subgroup ${\rm\Gamma}(L)$ of $\text{SL}_{2}(\mathbb{Z}_{p}[[T]])$ for a principal ideal $(L)\neq 0$ of $\mathbb{Z}_{p}[[T]]$ for the canonical ‘weight’ variable $t=1+T$. If $L\notin {\rm\Lambda}^{\times }$, the power series $L$ is proven to be a factor of the Kubota–Leopoldt $p$-adic $L$-function or of the square of the anticyclotomic Katz $p$-adic $L$-function or a power of $(t^{p^{m}}-1)$.
In this paper, we prove that the Sato–Tate conjecture for primitive Maass forms holds on average. We also investigate the rate of convergence in the Sato–Tate conjecture and establish some estimates of the discrepancy with respect to the Sato–Tate measure on the average of primitive Maass forms.
While investigating the Doi–Naganuma lift, Zagier defined integral weight cusp forms $f_D$ which are naturally defined in terms of binary quadratic forms of discriminant $D$. It was later determined by Kohnen and Zagier that the generating function for the function $f_D$ is a half-integral weight cusp form. A natural preimage of $f_D$ under a differential operator at the heart of the theory of harmonic weak Maass forms was determined by the first two authors and Kohnen. In this paper, we consider the modularity properties of the generating function of these preimages. We prove that although the generating function is not itself modular, it can be naturally completed to obtain a half-integral weight modular object.
We construct linear maps from the spaces of quasimodular forms for a discrete subgroup Γ of SL(2,ℝ) to some cohomology spaces of the group Γ and prove that these maps are equivariant with respect to appropriate Hecke operator actions. The results are obtained by using the fact that there is a correspondence between quasimodular forms and certain finite sequences of modular forms.
We study the action of the Hecke operators Un on the set of hypergeometric functions, as well as on formal power series. We show that the spectrum of these operators on the set of hypergeometric functions is the set {na:n∈ℕ,a∈ℤ}, and that the polylogarithms play an important role in the study of the eigenfunctions of the Hecke operators Un on the set of hypergeometric functions. As a corollary of our results on simultaneous eigenfunctions, we also obtain an apparently unrelated result regarding the behavior of completely multiplicative hypergeometric coefficients.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.