We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For homogeneous polynomials $G_1,\ldots ,G_k$ over a finite field, their Dwork complex is defined by Adolphson and Sperber, based on Dwork’s theory. In this article, we will construct an explicit cochain map from the Dwork complex of $G_1,\ldots ,G_k$ to the Monsky–Washnitzer complex associated with some affine bundle over the complement $\mathbb {P}^n\setminus X_G$ of the common zero $X_G$ of $G_1,\ldots ,G_k$, which computes the rigid cohomology of $\mathbb {P}^n\setminus X_G$. We verify that this cochain map realizes the rigid cohomology of $\mathbb {P}^n\setminus X_G$ as a direct summand of the Dwork cohomology of $G_1,\ldots ,G_k$. We also verify that the comparison map is compatible with the Frobenius and the Dwork operator defined on both complexes, respectively. Consequently, we extend Katz’s comparison results in [19] for projective hypersurface complements to arbitrary projective complements.
We develop an effective version of the Chabauty–Kim method which gives explicit upper bounds on the number of $S$-integral points on a hyperbolic curve in terms of dimensions of certain Bloch–Kato Selmer groups. Using this, we give a new ‘motivic’ proof that the number of solutions to the $S$-unit equation is bounded uniformly in terms of $\#S$.
We establish a Harder–Narasimhan formalism for modifications of $G$-bundles on the Fargues–Fontaine curve. The semi-stable stratum of the associated stratification of the ${B^+_{{\rm dR}}}$-Grassmannian coincides with the variant of the weakly admissible locus defined by Viehmann, and its classical points agree with those of the basic Newton stratum. When restricted to minuscule affine Schubert cells, the stratification corresponds to the Harder–Narasimhan stratification of Dat, Orlik and Rapoport. We also study basic geometric properties of the strata, and the relation to the Hodge–Newton decomposition.
We prove an analogue of Lang's conjecture on divisible groups for polynomial dynamical systems over number fields. In our setting, the role of the divisible group is taken by the small orbit of a point $\alpha$ where the small orbit by a polynomial $f$ is given by
\begin{align*} \mathcal{S}_\alpha = \{\beta \in \mathbb{C}; f^{\circ n}(\beta) = f^{\circ n}(\alpha) \text{ for some } n \in \mathbb{Z}_{\geq 0}\}. \end{align*}
Our main theorem is a classification of the algebraic relations that hold between infinitely many pairs of points in $\mathcal {S}_\alpha$ when everything is defined over the algebraic numbers and the degree $d$ of $f$ is at least 2. Our proof relies on a careful study of localisations of the dynamical system and follows an entirely different approach than previous proofs in this area. In particular, we introduce transcendence theory and Mahler functions into this field. Our methods also allow us to classify all algebraic relations that hold for infinitely many pairs of points in the grand orbit
\begin{align*} \mathcal{G}_\alpha = \{\beta \in \mathbb{C}; f^{\circ n}(\beta) = f^{\circ m}(\alpha) \text{ for some } n ,m\in \mathbb{Z}_{\geq 0}\} \end{align*}
of $\alpha$ if $|f^{\circ n}(\alpha )|_v \rightarrow \infty$ at a finite place $v$ of good reduction co-prime to $d$.
We provide a new formalism of de Rham–Witt complexes in the logarithmic setting. This construction generalises a result of Bhatt–Lurie–Mathew and agrees with those of Hyodo–Kato and Matsuue for log-smooth schemes of log-Cartier type. We then use our construction to study the monodromy action and slopes of Frobenius on log crystalline cohomology.
We construct examples of smooth proper rigid-analytic varieties admitting formal models with projective special fibers and violating Hodge symmetry for cohomology in degrees ${\geq }3$. This answers negatively the question raised by Hansen and Li.
Let K be a complete discrete valuation field of characteristic $0$, with not necessarily perfect residue field of characteristic $p>0$. We define a Faltings extension of $\mathcal {O}_K$ over $\mathbb {Z}_p$, and we construct a Hodge-Tate filtration for abelian varieties over K by generalizing Fontaine’s construction [Fon82] where he treated the perfect residue field case.
We prove that a Kummer surface defined over a complete strictly Henselian discretely valued field K of residue characteristic different from 2 admits a strict Kulikov model after finite base change. The Kulikov models we construct will be schemes, so our results imply that the semistable reduction conjecture is true for Kummer surfaces in this setup, even in the category of schemes. Our construction of Kulikov models is closely related to an earlier construction of Künnemann, which produces semistable models of Abelian varieties. It is well known that the special fibre of a strict Kulikov model belongs to one of three types, and we shall prove that the type of the special fibre of a strict Kulikov model of a Kummer surface and the toric rank of a corresponding Abelian surface are determined by each other. We also study the relationship between this invariant and the Galois representation on the second ℓ-adic cohomology of the Kummer surface. Finally, we apply our results, together with earlier work of Halle–Nicaise, to give a proof of the monodromy conjecture for Kummer surfaces in equal characteristic zero.
In this note, we prove the logarithmic $p$-adic comparison theorem for open rigid analytic varieties. We prove that a smooth rigid analytic variety with a strict simple normal crossing divisor is locally $K(\unicode[STIX]{x1D70B},1)$ (in a certain sense) with respect to $\mathbb{F}_{p}$-local systems and ramified coverings along the divisor. We follow Scholze’s method to produce a pro-version of the Faltings site and use this site to prove a primitive comparison theorem in our setting. After introducing period sheaves in our setting, we prove aforesaid comparison theorem.
For a proper, smooth scheme $X$ over a $p$-adic field $K$, we show that any proper, flat, semistable ${\mathcal{O}}_{K}$-model ${\mathcal{X}}$ of $X$ whose logarithmic de Rham cohomology is torsion free determines the same ${\mathcal{O}}_{K}$-lattice inside $H_{\text{dR}}^{i}(X/K)$ and, moreover, that this lattice is functorial in $X$. For this, we extend the results of Bhatt–Morrow–Scholze on the construction and the analysis of an $A_{\text{inf}}$-valued cohomology theory of $p$-adic formal, proper, smooth ${\mathcal{O}}_{\overline{K}}$-schemes $\mathfrak{X}$ to the semistable case. The relation of the $A_{\text{inf}}$-cohomology to the $p$-adic étale and the logarithmic crystalline cohomologies allows us to reprove the semistable conjecture of Fontaine–Jannsen.
Given systems of two (inhomogeneous) quadratic equations in four variables, it is known that the Hasse principle for integral points may fail. Sometimes this failure can be explained by some integral Brauer–Manin obstruction. We study the existence of a non-trivial algebraic part of the Brauer group for a family of such systems and show that the failure of the integral Hasse principle due to an algebraic Brauer–Manin obstruction is rare, as for a generic choice of a system the algebraic part of the Brauer-group is trivial. We use resolvent constructions to give quantitative upper bounds on the number of exceptions.
Deninger et Werner ont développé un analogue pour les courbes $p$-adiques de la correspondance classique de Narasimhan et Seshadri entre les fibrés vectoriels stables de degré $0$ et les représentations unitaires du groupe fondamental topologique pour une courbe complexe propre et lisse. Par transport parallèle, ils ont associé fonctoriellement à chaque fibré vectoriel sur une courbe $p$-adique, dont la réduction est fortement semi-stable de degré $0$, une représentation $p$-adique du groupe fondamental de la courbe. Ils se sont posé quelques questions : leur foncteur est-il pleinement fidèle ? La cohomologie des systèmes locaux fournis par celui-ci admet-elle une filtration de Hodge-Tate ? Leur construction est-elle compatible avec la correspondance de Simpson $p$-adique développée par Faltings ? Nous répondons à ces questions dans cet article.
In this article, we present a conjectural formula describing the cokernel of the Albanese map of zero-cycles of smooth projective varieties $X$ over $p$-adic fields in terms of the Néron–Severi group and provide a proof under additional assumptions on an integral model of $X$. The proof depends on a non-degeneracy result of Brauer–Manin pairing due to Saito–Sato and on Gabber–de Jong’s comparison result of cohomological and Azumaya–Brauer groups. We will also mention the local–global problem for the Albanese cokernel; the abelian group on the ‘local side’ turns out to be a finite group.
We construct new indecomposable elements in the higher Chow group $CH^2(A,1)$ of a principally polarized Abelian surface over a $p$-adic local field, which generalize an element constructed by Collino [Griffiths’ infinitesimal invariant and higher K-theory on hyperelliptic Jacobians, J. Algebraic Geom. 6 (1997), 393–415]. These elements are constructed using a generalization, due to Birkenhake and Wilhelm [Humbert surfaces and the Kummer plane, Trans. Amer. Math. Soc. 355 (2003), 1819–1841 (electronic)], of a classical construction of Humbert. They can be used to prove a non-Archimedean analogue of the Hodge-${\mathcal{D}}$-conjecture – namely, the surjectivity of the boundary map in the localization sequence – in the case where the Abelian surface has good and ordinary reduction.
Given a prime $p\gt 2$, an integer $h\geq 0$, and a wide open disk $U$ in the weight space $ \mathcal{W} $ of ${\mathbf{GL} }_{2} $, we construct a Hecke–Galois-equivariant morphism ${ \Psi }_{U}^{(h)} $ from the space of analytic families of overconvergent modular symbols over $U$ with bounded slope $\leq h$, to the corresponding space of analytic families of overconvergent modular forms, all with ${ \mathbb{C} }_{p} $-coefficients. We show that there is a finite subset $Z$ of $U$ for which this morphism induces a $p$-adic analytic family of isomorphisms relating overconvergent modular symbols of weight $k$ and slope $\leq h$ to overconvergent modular forms of weight $k+ 2$ and slope $\leq h$.
In this paper, we introduce variants of formal nearby cycles for a locally noetherian formal scheme over a complete discrete valuation ring. If the formal scheme is locally algebraizable, then our nearby cycle gives a generalization of Berkovich’s formal nearby cycle. Our construction is entirely scheme theoretic, and does not require rigid geometry. Our theory is intended for applications to the local study of the cohomology of Rapoport–Zink spaces.
We give proofs of de Rham comparison isomorphisms for rigid-analytic varieties, with coefficients and in families. This relies on the theory of perfectoid spaces. Another new ingredient is the pro-étale site, which makes all constructions completely functorial.
Let K be a local field of equal characteristic p>2, let XK/K be a smooth proper relative curve, and let ℱ be a rank 1 smooth l-adic sheaf (l≠p) on a dense open subset UK⊂XK. In this paper, under some assumptions on the wild ramification of ℱ, we prove a conductor formula that computes the Swan conductor of the etale cohomology of the vanishing cycles of ℱ. Our conductor formula is a generalization of the conductor formula of Bloch, but for non-constant coefficients.
In the predecessor to this article, we used global equidistribution theorems to prove that given a correspondence between a modular curve and an elliptic curve A, the intersection of any finite-rank subgroup of A with the set of CM-points of A is finite. In this article we apply local methods, involving the theory of arithmetic differential equations, to prove quantitative versions of a similar statement. The new methods apply also to certain infinite-rank subgroups, as well as to the situation where the set of CM-points is replaced by certain isogeny classes of points on the modular curve. Finally, we prove Shimura-curve analogues of these results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.