To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider self-propelled rigid bodies interacting through local body-attitude alignment modelled by stochastic differential equations. We derive a hydrodynamic model of this system at large spatio-temporal scales and particle numbers in any dimension $n \geq 3$. This goal was already achieved in dimension $n=3$ or in any dimension $n \geq 3$ for a different system involving jump processes. However, the present work corresponds to huge conceptual and technical gaps compared with earlier ones. The key difficulty is to determine an auxiliary but essential object, the generalised collision invariant. We achieve this aim by using the geometrical structure of the rotation group, namely its maximal torus, Cartan subalgebra and Weyl group as well as other concepts of representation theory and Weyl’s integration formula. The resulting hydrodynamic model appears as a hyperbolic system whose coefficients depend on the generalised collision invariant.
The box-ball system (BBS) was introduced by Takahashi and Satsuma as a discrete counterpart of the Korteweg-de Vries equation. Both systems exhibit solitons whose shape and speed are conserved after collision with other solitons. We introduce a slot decomposition of ball configurations, each component being an infinite vector describing the number of size k solitons in each k-slot. The dynamics of the components is linear: the kth component moves rigidly at speed k. Let $\zeta $ be a translation-invariant family of independent random vectors under a summability condition and $\eta $ be the ball configuration with components $\zeta $. We show that the law of $\eta $ is translation invariant and invariant for the BBS. This recipe allows us to construct a large family of invariant measures, including product measures and stationary Markov chains with ball density less than $\frac {1}{2}$. We also show that starting BBS with an ergodic measure, the position of a tagged k-soliton at time t, divided by t converges as $t\to \infty $ to an effective speed $v_k$. The vector of speeds satisfies a system of linear equations related with the generalised Gibbs ensemble of conservative laws.
Consider two independent Goldstein-Kac telegraph processes X1(t) and X2(t) on the real line ℝ. The processes Xk(t), k = 1, 2, describe stochastic motions at finite constant velocities c1 > 0 and c2 > 0 that start at the initial time instant t = 0 from the origin of ℝ and are controlled by two independent homogeneous Poisson processes of rates λ1 > 0 and λ2 > 0, respectively. We obtain a closed-form expression for the probability distribution function of the Euclidean distance ρ(t) = |X1(t) - X2(t)|, t > 0, between these processes at an arbitrary time instant t > 0. Some numerical results are also presented.
In this paper we introduce the concepts of instantaneous reversibility and instantaneous entropy production rate for inhomogeneous Markov chains with denumerable state spaces. The following statements are proved to be equivalent: the inhomogeneous Markov chain is instantaneously reversible; it is in detailed balance; its entropy production rate vanishes. In particular, for a time-periodic birth-death chain, which can be regarded as a simple version of a physical model (Brownian motors), we prove that its rotation number is 0 when it is instantaneously reversible or periodically reversible. Hence, in our model of Markov chains, the directed transport phenomenon of Brownian motors can occur only in nonequilibrium and irreversible systems.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.