We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give a short proof of the anticyclotomic analogue of the “strong” main conjecture of Kurihara on Fitting ideals of Selmer groups for elliptic curves with good ordinary reduction under mild hypotheses. More precisely, we completely determine the initial Fitting ideal of Selmer groups over finite subextensions of an imaginary quadratic field in its anticyclotomic $\mathbb {Z}_p$-extension in terms of Bertolini–Darmon’s theta elements.
Given an elliptic curve $ E $ over $ \mathbb {Q} $ of analytic rank zero, its L-function can be twisted by an even primitive Dirichlet character $ \chi $ of order $ q $, and in many cases its associated special L-value $ \mathscr {L}(E, \chi ) $ is known to be integral after normalizing by certain periods. This article determines the precise value of $ \mathscr {L}(E, \chi ) $ in terms of Birch–Swinnerton-Dyer invariants when $ q = 3 $, classifies their asymptotic densities modulo $ 3 $ by fixing $ E $ and varying $ \chi $, and presents a lower bound on the $ 3 $-adic valuation of $ \mathscr {L}(E, 1) $, all of which arise from a congruence of modular symbols. These results also explain some phenomena observed by Dokchitser–Evans–Wiersema and by Kisilevsky–Nam.
We explore the relationship between (3-isogeny induced) Selmer group of an elliptic curve and the (3 part of) the ideal class group, over certain non-abelian number fields.
Let p be an odd prime, and suppose that $E_1$ and $E_2$ are two elliptic curves which are congruent modulo p. Fix an Artin representation $\tau\,{:}\,G_{F}\rightarrow \mathrm{GL}_2(\mathbb{C})$ over a totally real field F, induced from a Hecke character over a CM-extension $K/F$. Assuming $E_1$ and $E_2$ are ordinary at p, we compute the variation in the $\mu$- and $\lambda$-invariants for the $\tau$-part of the Iwasawa Main Conjecture, as one switches from $E_1$ to $E_2$. Provided an Euler system exists, it will follow directly that IMC$(E_1,\tau)$ is true if and only if IMC$(E_2,\tau)$ is true.
We develop the theory and algorithms necessary to be able to verify the strong Birch–Swinnerton-Dyer Conjecture for absolutely simple modular abelian varieties over ${\mathbf {Q}}$. We apply our methods to all 28 Atkin–Lehner quotients of $X_0(N)$ of genus $2$, all 97 genus $2$ curves from the LMFDB whose Jacobian is of this type and six further curves originally found by Wang. We are able to verify the strong BSD Conjecture unconditionally and exactly in all these cases; this is the first time that strong BSD has been confirmed for absolutely simple abelian varieties of dimension at least $2$. We also give an example where we verify that the order of the Tate–Shafarevich group is $7^2$ and agrees with the order predicted by the BSD Conjecture.
For an elliptic curve E defined over a number field K and $L/K$ a Galois extension, we study the possibilities of the Galois group Gal$(L/K)$, when the Mordell–Weil rank of $E(L)$ increases from that of $E(K)$ by a small amount (namely 1, 2, and 3). In relation with the vanishing of corresponding L-functions at $s=1$, we prove several elliptic analogues of classical theorems related to Artin’s holomorphy conjecture. We then apply these to study the analytic minimal subfield, first introduced by Akbary and Murty, for the case when order of vanishing is 2. We also investigate how the order of vanishing changes as rank increases by 1 and vice versa, generalizing a theorem of Kolyvagin.
In this paper, we prove Kato’s main conjecture for $CM$ modular forms for primes of potentially ordinary reduction under certain hypotheses on the modular form.
For a nonconstant elliptic surface over $\mathbb {P}^1$ defined over $\mathbb {Q}$, it is a result of Silverman [‘Heights and the specialization map for families of abelian varieties’, J. reine angew. Math.342 (1983), 197–211] that the Mordell–Weil rank of the fibres is at least the rank of the group of sections, up to finitely many fibres. If the elliptic surface is nonisotrivial, one expects that this bound is an equality for infinitely many fibres, although no example is known unconditionally. Under the Bunyakovsky conjecture, such an example has been constructed by Neumann [‘Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. I’, Math. Nachr.49 (1971), 107–123] and Setzer [‘Elliptic curves of prime conductor’, J. Lond. Math. Soc. (2)10 (1975), 367–378]. In this note, we show that the Legendre elliptic surface has the desired property, conditional on the existence of infinitely many Mersenne primes.
In this article, we improve our main results from [LL21] in two directions: First, we allow ramified places in the CM extension $E/F$ at which we consider representations that are spherical with respect to a certain special maximal compact subgroup, by formulating and proving an analogue of the Kudla–Rapoport conjecture for exotic smooth Rapoport–Zink spaces. Second, we lift the restriction on the components at split places of the automorphic representation, by proving a more general vanishing result on certain cohomology of integral models of unitary Shimura varieties with Drinfeld level structures.
We show that the conjecture of [27] for the special value at $s=1$ of the zeta function of an arithmetic surface is equivalent to the Birch–Swinnerton–Dyer conjecture for the Jacobian of the generic fibre.
In this article, we show that the Abel–Jacobi images of the Heegner cycles over the Shimura curves constructed by Nekovar, Besser and the theta elements contructed by Chida–Hsieh form a bipartite Euler system in the sense of Howard. As an application of this, we deduce a converse to Gross–Zagier–Kolyvagin type theorem for higher weight modular forms generalising works of Wei Zhang and Skinner for modular forms of weight 2. That is, we show that if the rank of certain residual Selmer group is 1, then the Abel–Jacobi image of the Heegner cycle is nonzero in this residual Selmer group.
Let $E/\mathbf {Q}$ be an elliptic curve and $p>3$ be a good ordinary prime for E and assume that $L(E,1)=0$ with root number $+1$ (so $\text {ord}_{s=1}L(E,s)\geqslant 2$). A construction of Darmon–Rotger attaches to E and an auxiliary weight 1 cuspidal eigenform g such that $L(E,\text {ad}^{0}(g),1)\neq 0$, a Selmer class $\kappa _{p}\in \text {Sel}(\mathbf {Q},V_{p}E)$, and they conjectured the equivalence
In this article, we prove the first cases on Darmon–Rotger’s conjecture when the auxiliary eigenform g has complex multiplication. In particular, this provides a new construction of nontrivial Selmer classes for elliptic curves of rank 2.
The formula of the title relates p-adic heights of Heegner points and derivatives of p-adic L-functions. It was originally proved by Perrin-Riou for p-ordinary elliptic curves over the rationals, under the assumption that p splits in the relevant quadratic extension. We remove this assumption, in the more general setting of Hilbert-modular abelian varieties.
For an (irreducible) recurrence equation with coefficients from $\mathbb Z[n]$ and its two linearly independent rational solutions $u_n,v_n$, the limit of $u_n/v_n$ as $n\to \infty $, when it exists, is called the Apéry limit. We give a construction that realises certain quotients of L-values of elliptic curves as Apéry limits.
Let A be an abelian variety defined over a number field k, let p be an odd prime number and let $F/k$ be a cyclic extension of p-power degree. Under not-too-stringent hypotheses we give an interpretation of the p-component of the relevant case of the equivariant Tamagawa number conjecture in terms of integral congruence relations involving the evaluation on appropriate points of A of the ${\rm Gal}(F/k)$-valued height pairing of Mazur and Tate. We then discuss the numerical computation of this pairing, and in particular obtain the first numerical verifications of this conjecture in situations in which the p-completion of the Mordell–Weil group of A over F is not a projective Galois module.
We prove that the special-value conjecture for the zeta function of a proper, regular, flat arithmetic surface formulated in [6] at $s=1$ is equivalent to the Birch and Swinnerton-Dyer conjecture for the Jacobian of the generic fibre. There are two key results in the proof. The first is the triviality of the correction factor of [6, Conjecture 5.12], which we show for arbitrary regular proper arithmetic schemes. In the proof we need to develop some results for the eh-topology on schemes over finite fields which might be of independent interest. The second result is a different proof of a formula due to Geisser, relating the cardinalities of the Brauer and the Tate–Shafarevich group, which applies to arbitrary rather than only totally imaginary base fields.
Let f and g be two cuspidal modular forms and let ${\mathcal {F}}$ be a Coleman family passing through f, defined over an open affinoid subdomain V of weight space $\mathcal {W}$. Using ideas of Pottharst, under certain hypotheses on f and $g,$ we construct a coherent sheaf over $V \times \mathcal {W}$ that interpolates the Bloch–Kato Selmer group of the Rankin–Selberg convolution of two modular forms in the critical range (i.e, the range where the p-adic L-function $L_p$ interpolates critical values of the global L-function). We show that the support of this sheaf is contained in the vanishing locus of $L_p$.
Fix an odd prime p. Let $\mathcal{D}_n$ denote a non-abelian extension of a number field K such that $K\cap\mathbb{Q}(\mu_{p^{\infty}})=\mathbb{Q}, $ and whose Galois group has the form $ \text{Gal}\big(\mathcal{D}_n/K\big)\cong \big(\mathbb{Z}/p^{n'}\mathbb{Z}\big)^{\oplus g}\rtimes \big(\mathbb{Z}/p^n\mathbb{Z}\big)^{\times}\ $ where g > 0 and $0 \lt n'\leq n$. Given a modular Galois representation $\overline{\rho}:G_{\mathbb{Q}}\rightarrow \text{GL}_2(\mathbb{F})$ which is p-ordinary and also p-distinguished, we shall write $\mathcal{H}(\overline{\rho})$ for the associated Hida family. Using Greenberg’s notion of Selmer atoms, we prove an exact formula for the algebraic λ-invariant
\begin{equation}\lambda^{\text{alg}}_{\mathcal{D}_n}(f) \;=\; \text{the number of zeroes of }\text{char}_{\Lambda}\big(\text{Sel}_{\mathcal{D}_n^{\text{cy}}}\big(f\big)^{\wedge}\big)\end{equation}
at all $f\in\mathcal{H}(\overline{\rho})$, under the assumption $\mu^{\text{alg}}_{K(\mu_p)}(f_0)=0$ for at least one form f0. We can then easily deduce that $\lambda^{\text{alg}}_{\mathcal{D}_n}(f)$ is constant along branches of $\mathcal{H}(\overline{\rho})$, generalising a theorem of Emerton, Pollack and Weston for $\lambda^{\text{alg}}_{\mathbb{Q}(\mu_{p})}(f)$.
For example, if $\mathcal{D}_{\infty}=\bigcup_{n\geq 1}\mathcal{D}_n$ has the structure of a p-adic Lie extension then our formulae include the cases where: either (i) $\mathcal{D}_{\infty}/K$ is a g-fold false Tate tower, or (ii) $\text{Gal}\big(\mathcal{D}_{\infty}/K(\mu_p)\big)$ has dimension ≤ 3 and is a pro-p-group.
Let ${\mathcal{X}}$ be a regular variety, flat and proper over a complete regular curve over a finite field such that the generic fiber $X$ is smooth and geometrically connected. We prove that the Brauer group of ${\mathcal{X}}$ is finite if and only Tate’s conjecture for divisors on $X$ holds and the Tate–Shafarevich group of the Albanese variety of $X$ is finite, generalizing a theorem of Artin and Grothendieck for surfaces to arbitrary relative dimension. We also give a formula relating the orders of the group under the assumption that they are finite, generalizing the known formula for a surface.