This study investigates the accumulation of glycogen, amino acids, and fatty acids in male Mytilus coruscus during different stages of gonadal development and explores their relationships with reproductive processes. Glycogen levels were highest during the resting phase, decreasing progressively during the proliferation and maturation phases. A positive correlation was observed between glycogen and carbon content, indicating a close association between energy storage and metabolic processes. Amino acid content, particularly essential amino acids (EAAs), increased during gonadal development, reflecting the higher demand for protein synthesis and cellular metabolism. Branched-chain amino acids (BCAAs) such as isoleucine, leucine, and lysine were key in activating protein synthesis and supporting gametogenesis. Non-essential amino acids like aspartic acid, glutamic acid, and glycine also accumulate, supporting cellular function and reproductive regulation. Fatty acids, especially unsaturated fatty acids (UFAs) and polyunsaturated fatty acids (PUFAs), progressively accumulated in the testes, highlighting their role in energy supply and membrane integrity during gametogenesis. Phosphorus (P) accumulated in parallel with fatty acids, supporting DNA and RNA synthesis, energy metabolism, and cell membrane function. This study emphasizes the crucial role of these biochemical components in supporting gonadal development in male M. coruscus, providing insights into the metabolic pathways involved in marine bivalve reproduction.