Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-26T23:00:04.172Z Has data issue: false hasContentIssue false

Chapter 7 - Mass Effect and Edema

Published online by Cambridge University Press:  01 July 2017

Murat Gokden
Affiliation:
University of Arkansas for Medical Sciences, Little Rock
Manoj Kumar
Affiliation:
University of Arkansas for Medical Sciences, Little Rock
Get access
Type
Chapter
Information
Neuropathologic and Neuroradiologic Correlations
A Differential Diagnostic Text and Atlas
, pp. 131 - 150
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ellison, , Love, D., , S., eds. Neuropathology: A Reference Text of CNS Pathology. London: Mosby Elsevier, 2013, pp. 287–91.Google Scholar
Seilhean, , De Girolami, D., , U., Gray, F. Basic pathology of the central nervous system. In Gray, F., Duyckaerts, C., and De Girolami, U., eds., Escourolle and Poirier's Manual of Basic Neuropathology. Oxford: Oxford University Press, 2014, pp. 119.Google Scholar
Blumbergs, P., Reilly, P., Vink, R. Trauma. In Love, S., Louis, D. N., and Ellison, D. W., eds., Greenfield's Neuropathology. London: Edward Arnold, 2008, pp. 733832.Google Scholar
Stummer, W. Mechanisms of tumor-related brain edema. Neurosurg Focus 2007; 22: E8Google Scholar
Hirano, A. The role of electron microscopy in neuropathology: A personal historical note. Acta Neuropathol 2005; 109: 115–23.Google Scholar
Atlas, S. W. Magnetic Resonance Imaging of the Brain and Spine, 4th edn. Philadelphia, PA: Lippincott Williams and Wilkins, 2008.Google Scholar
Michinaga, S., Koyama, Y. Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci 2015; 16: 9949–75.Google Scholar
Quereshi, A. L., Suarez, A. L. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med 2000; 28(9): 3301–13.Google Scholar
Stokum, J. A., Gerzanich, V., Simard, J. M. Molecular pathophysiology of cerebral edema. J Cerebr Blood Flow Metab 2016; 36: 513–38.Google Scholar
Rowland, L.P., Pedley, T.A. Brain edema and disorders of intracranial pressure. In Merritt's Neurology, 12th edn. Philadelphia, PA: Lippincott Williams & Wilkins, 2010; ch. 55.Google Scholar
Papadopoulos, M. C., Saadoun, S., Binder, D. K., et al. Molecular mechanisms of brain tumor edema. Neuroscience 2004; 129: 1011–20.Google Scholar
Badaut, J., Fukuda, A. M., Jullienne, A., et al. Aquaporin and brain diseases. Biochim Biophys Acta 2014; 1840: 155465.Google Scholar
Wegener, S., Hoehn, M., Back, T. Ischemia edema and necrosis. In Magnetic Resonance Imaging in Ischemic Stroke. New York: Springer, 2006, pp. 133–5.Google Scholar
Grisold, W., Soffietti, R. (eds.) Blood–brain barrier and brain edema. Neuro-oncology – Part 1. Amsterdam: Elsevier, 2012, pp. 55–9.Google Scholar
Schaefer, P. W., Ferdinand, S. B., Gonzalez, G., Shwamm, L. H. Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with eclampsia. Stroke 1997; 28: 1082–5.Google Scholar
Weisberg, L., Greenberg, J., Stazio, A. Computed tomographic findings in brain swelling. Comput Med Imaging Graph 1990; 14: 263–8.Google Scholar
Hazell, A. S. Excitotoxic mechanisms in stroke: An update of concepts and treatment strategies. Neurochem Int 2007; 50: 94153.Google Scholar
Ho, M., Rojas, R., Eisenberg, R. L. Cerebral edema. Am J Roentgenol 2012; 199: W258–73.Google Scholar
Unterberg, A. W., Stover, J., Kress, B., Kiening, K. L. Edema and brain trauma. Neuroscience 2004; 129: 1021–9.Google Scholar
Kale, R. A., Gupta, R. K., Saraswat, V. A., et al. Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy. Hepatology 2006; 43: 698706.Google Scholar
Bardutzky, J., Schwab, S. Antiedema therapy in ischemic stroke. Stroke 2008; 38: 3084–94.Google Scholar
Tomsick, T., Brott, T., Barsan, W., et al. Prognostic value of the hyperdense middle cerebral artery sign and stroke scale score before ultraearly thrombolytic therapy. Am J Neuroradiol 1996; 17: 7985.Google Scholar
Truwit, C. N., Barkovich, A. J., Gean-Marton, A., Hibri, N., Norman, D. Loss of the insular ribbon: Another early CT sign of acute middle cerebral artery infarction. Radiology 1990; 176: 801–6.Google Scholar
Schaefer, P. W., Grant, P. E., Gonzalez, G. Diffusion-weighted MR imaging of the brain. Radiology 2000; 2: 331–45.Google Scholar
van Everdingen, K. J., van der Grond, J., Kappelle, L. J., Ramos, L. M. P., Mali, W. P. T. M. Diffusion weighted magnetic resonance imaging in acute stroke. Stroke 1998; 29: 1783–90.Google Scholar
Srinivasan, A., Goyal, M., Azri, F. A., Lum, C. State-of-the-art imaging in acute stroke. Radiographics. 2006; 26: S7595.Google Scholar
Greenberg, D. A., Jin, K. Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci 2013; 70: 1753–61.Google Scholar
Lonser, R.R., Vortmeyer, A.O., Butman, J.A., et al. Edema is a precursor to central nervous system peritumoral cyst formation. Ann Neurol 2005; 58: 392–9.Google Scholar
Fink, K. R., Fink, J. R. Imaging of brain metastases. Surg Neurol Intl 2013; 4: S209–19.Google Scholar
Kastrup, O., Wanke, I., Maschke, M. Neuroimaging of infections. NeuroRx 2005; 2: 324–32.Google Scholar
Xi, G., Hua, Y., Bhasin, R., et al. Mechanisms of edema formation after intracerebral hemorrage. Stroke 2001; 32: 2932–38.Google Scholar
McMinn, R. M. H. Cranial cavity and meninges. In McMinn, R. M. H., ed., Last's Anatomy: Regional and Applied, 9th edn. Edinburgh: Churchill Livingstone, 2003, p. 561.Google Scholar
Venkataramana, N. K. Spinal dysraphism. J Pediatr Neurosci 2011; 6: S3140.Google Scholar
Marincek, B., Dondelinger, R. F. Emergency Radiology: Imaging and Intervention. Berlin: Springer, 2007, ch. 2.Google Scholar
Osborne, A. G. Diagnosis of the descending transtentorial herniation by cranial computed tomography. Radiology 1977; 123: 193–6.Google Scholar
Feldmann, E., Gandy, S. E., Becker, R., et al. MRI demonstrates descending transtentorial herniation. Neurology 1988; 38: 697701.Google Scholar
Parizel, P. M., Makkat, S., Jorens, P. G.,et al. Brainstem hemorrhage in descending transtentorial herniation (Duret hemorrage). Intensive Care Med 2002; 28(1): 85–8.Google Scholar
Ishikawa, M., Kikuchi, H., Fujisawa, I., Yonekawa, Y. Tonsillar herniation on magnetic resonance imaging. Neurosurgery 1988; 22(1): 7781.Google ScholarPubMed
Joseph, V., Reilly, P. Syndrome of the trephined. J Neurosurg 2009; 111: 650–2.Google Scholar
Sinclair, A. G., Scoffings, D. J. Imaging of the postoperative cranium. Radiographics 2010; 30: 461–82.Google Scholar
Altman, D. R., Altman, D. H. MR imaging of spinal dysraphism. Am J Neuroradiol 1987; 8: 533–8.Google Scholar
Kumar, B. E. P., Hegde, K. V., Kumari, L., Agarwal, A. Bilateral multiple level lateral meningocoeles. J Clin Imaging Sci 2013; 3: 1.Google Scholar
Oner, A. Y., Uzun, N., Tokgoz, N., Tali, E. T. Isolated true anterior thoracic meningocele. Am J Neuroradiol 2004; 25: 1828–30.Google ScholarPubMed
Teplick, J. G., Peyster, R. G., Teplick, S. K., Goodman, L. R., Haskin, M. E. CT identification of postlaminectomy pseudomeningocele. Am J Neuroradiol 1983; 140: 1203–6.Google Scholar
Rozenfield, M., Frim, D. M., Katzman, G. L., Ginat, D. T. MRI findings after surgery for Chiari malformation type I. Am J Roentgenol 2015; 205: 1086–93.Google Scholar
Deeb, Z. L., Kelley, K. J., Daffner, R. H. Magnetic resonance evaluation of cervical nerve root avulsion injury. Emerg Radiol 1996; 3: 172–5.Google Scholar
Ssaka, K. K., Phisitkul, P., Boyd, J. L., Marsh, J. L., El-Khoury, G. Y. Lumbosacral nerve root avulsions: MR imaging demonstration of acute abnormalities. Am J Neuroradiol 2006; 27: 1944–6.Google Scholar
Parmar, H., Park, P., Brahma, B., Gandhi, D. Imaging of idiopathic spinal cord herniation. Radiographics 2008; 28: 511–18.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×