Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T23:29:52.525Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  30 November 2009

Andrew Majda
Affiliation:
New York University
Xiaoming Wang
Affiliation:
Iowa State University
Get access

Summary

This book is an introduction to the fascinating and important interplay between non-linear dynamics and statistical theories for geophysical flows. The book is designed for a multi-disciplinary audience ranging from beginning graduate students to senior researchers in applied mathematics as well as theoretically inclined graduate students and researchers in atmosphere/ocean science. The approach in this book emphasizes the serendipity between physical phenomena and modern applied mathematics, including rigorous mathematical analysis, qualitative models, and numerical simulations. The book includes more conventional topics for non-linear dynamics applied to geophysical flows, such as long time selective decay, the effect of large-scale forcing, non-linear stability and fluid flow on the sphere, as well as emerging contemporary research topics involving applications of chaotic dynamics, equilibrium statistical mechanics, and information theory. The various competing approaches for equilibrium statistical theories for geophysical flows are compared and contrasted systematically from the viewpoint of modern applied mathematics, including an application for predicting the Great Red Spot of Jupiter in a fashion consistent with the observational record. Novel applications of information theory are utilized to simplify, unify, and compare the equilibrium statistical theories and also to quantify aspects of predictability in non-linear dynamical systems with many degrees of freedom. No previous background in geophysical flows, probability theory, information theory, or equilibrium statistical mechanics is needed to read the text. These topics and related background concepts are all introduced and developed through elementary examples and discussion throughout the text as they arise.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Andrew Majda, New York University, Xiaoming Wang, Iowa State University
  • Book: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows
  • Online publication: 30 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616778.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Andrew Majda, New York University, Xiaoming Wang, Iowa State University
  • Book: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows
  • Online publication: 30 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616778.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Andrew Majda, New York University, Xiaoming Wang, Iowa State University
  • Book: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows
  • Online publication: 30 November 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616778.001
Available formats
×