To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that for every $\eta \gt 0$ every sufficiently large $n$-vertex oriented graph $D$ of minimum semidegree exceeding $(1+\eta )\frac k2$ contains every balanced antidirected tree with $k$ edges and bounded maximum degree, if $k\ge \eta n$. In particular, this asymptotically confirms a conjecture of the first author for long antidirected paths and dense digraphs.
Further, we show that in the same setting, $D$ contains every $k$-edge antidirected subdivision of a sufficiently small complete graph, if the paths of the subdivision that have length $1$ or $2$ span a forest. As a special case, we can find all antidirected cycles of length at most $k$.
Finally, we address a conjecture of Addario-Berry, Havet, Linhares Sales, Reed, and Thomassé for antidirected trees in digraphs. We show that this conjecture is asymptotically true in $n$-vertex oriented graphs for all balanced antidirected trees of bounded maximum degree and of size linear in $n$.
A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary $r$-colouring of the complete $k$-uniform hypergraph $K_n^k$ when $k\geq 2$ and $k\in \{r-1,r\}$. We prove a result which says that if one replaces $K_n^k$ in Gyárfás’ theorem by any ‘expansive’ $k$-uniform hypergraph on $n$ vertices (that is, a $k$-uniform hypergraph $G$ on $n$ vertices in which $e(V_1, \ldots, V_k)\gt 0$ for all disjoint sets $V_1, \ldots, V_k\subseteq V(G)$ with $|V_i|\gt \alpha$ for all $i\in [k]$), then one gets a largest monochromatic component of essentially the same size (within a small error term depending on $r$ and $\alpha$). As corollaries we recover a number of known results about large monochromatic components in random hypergraphs and random Steiner triple systems, often with drastically improved bounds on the error terms.
Gyárfás’ result is equivalent to the dual problem of determining the smallest possible maximum degree of an arbitrary $r$-partite $r$-uniform hypergraph $H$ with $n$ edges in which every set of $k$ edges has a common intersection. In this language, our result says that if one replaces the condition that every set of $k$ edges has a common intersection with the condition that for every collection of $k$ disjoint sets $E_1, \ldots, E_k\subseteq E(H)$ with $|E_i|\gt \alpha$, there exists $(e_1, \ldots, e_k)\in E_1\times \cdots \times E_k$ such that $e_1\cap \cdots \cap e_k\neq \emptyset$, then the smallest possible maximum degree of $H$ is essentially the same (within a small error term depending on $r$ and $\alpha$). We prove our results in this dual setting.
For a graph $H$ and a hypercube $Q_n$, $\textrm{ex}(Q_n, H)$ is the largest number of edges in an $H$-free subgraph of $Q_n$. If $\lim _{n \rightarrow \infty } \textrm{ex}(Q_n, H)/|E(Q_n)| \gt 0$, $H$ is said to have a positive Turán density in a hypercube or simply a positive Turán density; otherwise, it has zero Turán density. Determining $\textrm{ex}(Q_n, H)$ and even identifying whether $H$ has a positive or zero Turán density remains a widely open question for general $H$. By relating extremal numbers in a hypercube and certain corresponding hypergraphs, Conlon found a large class of graphs, ones having so-called partite representation, that have zero Turán density. He asked whether this gives a characterisation, that is, whether a graph has zero Turán density if and only if it has partite representation. Here, we show that, as suspected by Conlon, this is not the case. We give an example of a class of graphs which have no partite representation, but on the other hand, have zero Turán density. In addition, we show that any graph whose every block has partite representation has zero Turán density in a hypercube.
Tao and Vu showed that every centrally symmetric convex progression $C\subset \mathbb{Z}^d$ is contained in a generalized arithmetic progression of size $d^{O(d^2)} \# C$. Berg and Henk improved the size bound to $d^{O(d\log d)} \# C$. We obtain the bound $d^{O(d)} \# C$, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.
For a subset $A$ of an abelian group $G$, given its size $|A|$, its doubling $\kappa =|A+A|/|A|$, and a parameter $s$ which is small compared to $|A|$, we study the size of the largest sumset $A+A'$ that can be guaranteed for a subset $A'$ of $A$ of size at most $s$. We show that a subset $A'\subseteq A$ of size at most $s$ can be found so that $|A+A'| = \Omega (\!\min\! (\kappa ^{1/3},s)|A|)$. Thus, a sumset significantly larger than the Cauchy–Davenport bound can be guaranteed by a bounded size subset assuming that the doubling $\kappa$ is large. Building up on the same ideas, we resolve a conjecture of Bollobás, Leader and Tiba that for subsets $A,B$ of $\mathbb{F}_p$ of size at most $\alpha p$ for an appropriate constant $\alpha \gt 0$, one only needs three elements $b_1,b_2,b_3\in B$ to guarantee $|A+\{b_1,b_2,b_3\}|\ge |A|+|B|-1$. Allowing the use of larger subsets $A'$, we show that for sets $A$ of bounded doubling, one only needs a subset $A'$ with $o(|A|)$ elements to guarantee that $A+A'=A+A$. We also address another conjecture and a question raised by Bollobás, Leader and Tiba on high-dimensional analogues and sets whose sumset cannot be saturated by a bounded size subset.
In mathematics, it simply is not true that 'you can't prove a negative'. Many revolutionary impossibility theorems reveal profound properties of logic, computation, fairness and the universe, and form the mathematical background of new technologies and Nobel prizes. But to fully appreciate these theorems and their impact on mathematics and beyond, you must understand their proofs.This book is the first to present these proofs for a broad, lay audience. It fully develops the simplest rigorous proofs found in the literature, reworked to contain less jargon and notation, and more background, intuition, examples, explanations, and exercises. Amazingly, all of the proofs in this book involve only arithmetic and basic logic – and are elementary, starting only from first principles and definitions. Very little background knowledge is required, and no specialized mathematical training – all you need is the discipline to follow logical arguments and a pen in your hand.
Introducing Stone–Priestley duality theory and its applications to logic and theoretical computer science, this book equips graduate students and researchers with the theoretical background necessary for reading and understanding current research in the area. After giving a thorough introduction to the algebraic, topological, logical, and categorical aspects of the theory, the book covers two advanced applications in computer science, namely in domain theory and automata theory. These topics are at the forefront of active research seeking to unify semantic methods with more algorithmic topics in finite model theory. Frequent exercises punctuate the text, with hints and references provided.
For graphs $G$ and $H$, the Ramsey number $r(G,H)$ is the smallest positive integer $N$ such that any red/blue edge colouring of the complete graph $K_N$ contains either a red $G$ or a blue $H$. A book $B_n$ is a graph consisting of $n$ triangles all sharing a common edge.
Recently, Conlon, Fox, and Wigderson conjectured that for any $0\lt \alpha \lt 1$, the random lower bound $r(B_{\lceil \alpha n\rceil },B_n)\ge (\sqrt{\alpha }+1)^2n+o(n)$ is not tight. In other words, there exists some constant $\beta \gt (\sqrt{\alpha }+1)^2$ such that $r(B_{\lceil \alpha n\rceil },B_n)\ge \beta n$ for all sufficiently large $n$. This conjecture holds for every $\alpha \lt 1/6$ by a result of Nikiforov and Rousseau from 2005, which says that in this range $r(B_{\lceil \alpha n\rceil },B_n)=2n+3$ for all sufficiently large $n$.
We disprove the conjecture of Conlon, Fox, and Wigderson. Indeed, we show that the random lower bound is asymptotically tight for every $1/4\leq \alpha \leq 1$. Moreover, we show that for any $1/6\leq \alpha \le 1/4$ and large $n$, $r(B_{\lceil \alpha n\rceil }, B_n)\le \left (\frac 32+3\alpha \right ) n+o(n)$, where the inequality is asymptotically tight when $\alpha =1/6$ or $1/4$. We also give a lower bound of $r(B_{\lceil \alpha n\rceil }, B_n)$ for $1/6\le \alpha \lt \frac{52-16\sqrt{3}}{121}\approx 0.2007$, showing that the random lower bound is not tight, i.e., the conjecture of Conlon, Fox, and Wigderson holds in this interval.