To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the community detection problem in sparse random hypergraphs under the non-uniform hypergraph stochastic block model (HSBM), a general model of random networks with community structure and higher-order interactions. When the random hypergraph has bounded expected degrees, we provide a spectral algorithm that outputs a partition with at least a $\gamma$ fraction of the vertices classified correctly, where $\gamma \in (0.5,1)$ depends on the signal-to-noise ratio (SNR) of the model. When the SNR grows slowly as the number of vertices goes to infinity, our algorithm achieves weak consistency, which improves the previous results in Ghoshdastidar and Dukkipati ((2017) Ann. Stat.45(1) 289–315.) for non-uniform HSBMs.
Our spectral algorithm consists of three major steps: (1) Hyperedge selection: select hyperedges of certain sizes to provide the maximal signal-to-noise ratio for the induced sub-hypergraph; (2) Spectral partition: construct a regularised adjacency matrix and obtain an approximate partition based on singular vectors; (3) Correction and merging: incorporate the hyperedge information from adjacency tensors to upgrade the error rate guarantee. The theoretical analysis of our algorithm relies on the concentration and regularisation of the adjacency matrix for sparse non-uniform random hypergraphs, which can be of independent interest.
We derive a sufficient condition for a sparse random matrix with given numbers of non-zero entries in the rows and columns having full row rank. The result covers both matrices over finite fields with independent non-zero entries and $\{0,1\}$-matrices over the rationals. The sufficient condition is generally necessary as well.
Given a family of graphs $\mathcal{F}$ and an integer $r$, we say that a graph is $r$-Ramsey for $\mathcal{F}$ if any $r$-colouring of its edges admits a monochromatic copy of a graph from $\mathcal{F}$. The threshold for the classic Ramsey property, where $\mathcal{F}$ consists of one graph, in the binomial random graph was located in the celebrated work of Rödl and Ruciński.
In this paper, we offer a twofold generalisation to the Rödl–Ruciński theorem. First, we show that the list-colouring version of the property has the same threshold. Second, we extend this result to finite families $\mathcal{F}$, where the threshold statements might also diverge. This also confirms further special cases of the Kohayakawa–Kreuter conjecture. Along the way, we supply a short(-ish), self-contained proof of the $0$-statement of the Rödl–Ruciński theorem.
We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the $n \times n$ determinant tensor is no larger than the $n$-th Bell number, which is much smaller than the previously best-known upper bounds when $n \geq 4$. Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the $4 \times 4$ determinant over ${\mathbb{F}}_2$ has tensor rank exactly equal to $12$. Our results also improve upon the best-known upper bound for the Waring rank of the determinant when $n \geq 17$, and lead to a new family of axis-aligned polytopes that tile ${\mathbb{R}}^n$.
Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An $r$-daisy determined by a pair of disjoint sets $K$ and $M$ is the $(r+|K|)$-uniform hypergraph $\{K\cup P\,{:}\, P\in M^{(r)}\}$. Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of $r$-daisies and also for special cases where the size of the kernel is bounded.
A $(k+r)$-uniform hypergraph $H$ on $(k+m)$ vertices is an $(r,m,k)$-daisy if there exists a partition of the vertices $V(H)=K\cup M$ with $|K|=k$, $|M|=m$ such that the set of edges of $H$ is all the $(k+r)$-tuples $K\cup P$, where $P$ is an $r$-tuple of $M$. We obtain an $(r-2)$-iterated exponential lower bound to the Ramsey number of an $(r,m,k)$-daisy for $2$-colours. This matches the order of magnitude of the best lower bounds for the Ramsey number of a complete $r$-graph.
We investigate the list packing number of a graph, the least $k$ such that there are always $k$ disjoint proper list-colourings whenever we have lists all of size $k$ associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree $\Delta$ has list packing number at most $\Delta +1$. Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks’-type theorem for the list packing number.
We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each $k\geq 2$ and $1\leq \ell \leq k-1$, we show that every $k$-graph on $n$ vertices with minimum codegree at least
contains $\exp\!(n\log n-\Theta (n))$ Hamilton $\ell$-cycles as long as $(k-\ell )\mid n$. When $(k-\ell )\mid k$, this gives a simple proof of a result of Glock, Gould, Joos, Kühn, and Osthus, while when $(k-\ell )\nmid k$, this gives a weaker count than that given by Ferber, Hardiman, and Mond, or when $\ell \lt k/2$, by Ferber, Krivelevich, and Sudakov, but one that holds for an asymptotically optimal minimum codegree bound.
A linear equation $E$ is said to be sparse if there is $c\gt 0$ so that every subset of $[n]$ of size $n^{1-c}$ contains a solution of $E$ in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that $E$ in $k$ variables is abundant if every subset of $[n]$ of size $\varepsilon n$ contains at least $\text{poly}(\varepsilon )\cdot n^{k-1}$ solutions of $E$. It is clear that every abundant $E$ is sparse, and Girão, Hurley, Illingworth, and Michel asked if the converse implication also holds. In this note, we show that this is the case for every $E$ in four variables. We further discuss a generalisation of this problem which applies to all linear equations.
We study the noise sensitivity of the minimum spanning tree (MST) of the $n$-vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by $n^{1/3}$ and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability $\varepsilon \gg n^{-1/3}$, then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if $\varepsilon \ll n^{-1/3}$, the GHP distance between the rescaled trees goes to $0$ in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of $n^{-1/3}$ coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.
We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every $\delta \in (0,1)$ there exists $C = C(\delta ) \gt 0$ such that the following holds. Let $D_0$ be an $n$-vertex digraph with minimum semidegree at least $\delta n$ and suppose that each edge of the union of $D_0$ with a copy of the random digraph $\mathbf{D}(n,C/n)$ on the same vertex set gets a colour in $[n]$ independently and uniformly at random. Then, with high probability, $D_0 \cup \mathbf{D}(n,C/n)$ has a rainbow directed Hamilton cycle.
This improves a result of Aigner-Horev and Hefetz ((2021) SIAM J. Discrete Math.35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured uniformly in a set of $(1 + \varepsilon )n$ colours.
Online algorithms are a rich area of research with widespread applications in scheduling, combinatorial optimization, and resource allocation problems. This lucid textbook provides an easy but rigorous introduction to online algorithms for graduate and senior undergraduate students. In-depth coverage of most of the important topics is presented with special emphasis on elegant analysis. The book starts with classical online paradigms like the ski-rental, paging, list-accessing, bin packing, where performance of online algorithms is studied under the worst-case input and moves on to newer paradigms like 'beyond worst case', where online algorithms are augmented with predictions using machine learning algorithms. The book goes on to cover multiple applied problems such as routing in communication networks, server provisioning in cloud systems, communication with energy harvested from renewable sources, and sub-modular partitioning. Finally, a wide range of solved examples and practice exercises are included, allowing hands-on exposure to the concepts.
Given a graph $F$, we consider the problem of determining the densest possible pseudorandom graph that contains no copy of $F$. We provide an embedding procedure that improves a general result of Conlon, Fox, and Zhao which gives an upper bound on the density. In particular, our result implies that optimally pseudorandom graphs with density greater than $n^{-1/3}$ must contain a copy of the Peterson graph, while the previous best result gives the bound $n^{-1/4}$. Moreover, we conjecture that the exponent $1/3$ in our bound is tight. We also construct the densest known pseudorandom $K_{2,3}$-free graphs that are also triangle-free. Finally, we give a different proof for the densest known construction of clique-free pseudorandom graphs due to Bishnoi, Ihringer, and Pepe that they have no large clique.
We investigate here the behaviour of a large typical meandric system, proving a central limit theorem for the number of components of a given shape. Our main tool is a theorem of Gao and Wormald that allows us to deduce a central limit theorem from the asymptotics of large moments of our quantities of interest.
The $d$-process generates a graph at random by starting with an empty graph with $n$ vertices, then adding edges one at a time uniformly at random among all pairs of vertices which have degrees at most $d-1$ and are not mutually joined. We show that, in the evolution of a random graph with $n$ vertices under the $d$-process with $d$ fixed, with high probability, for each $j \in \{0,1,\dots,d-2\}$, the minimum degree jumps from $j$ to $j+1$ when the number of steps left is on the order of $\ln (n)^{d-j-1}$. This answers a question of Ruciński and Wormald. More specifically, we show that, when the last vertex of degree $j$ disappears, the number of steps left divided by $\ln (n)^{d-j-1}$ converges in distribution to the exponential random variable of mean $\frac{j!}{2(d-1)!}$; furthermore, these $d-1$ distributions are independent.
The bipartite independence number of a graph $G$, denoted as $\tilde \alpha (G)$, is the minimal number $k$ such that there exist positive integers $a$ and $b$ with $a+b=k+1$ with the property that for any two disjoint sets $A,B\subseteq V(G)$ with $|A|=a$ and $|B|=b$, there is an edge between $A$ and $B$. McDiarmid and Yolov showed that if $\delta (G)\geq \tilde \alpha (G)$ then $G$ is Hamiltonian, extending the famous theorem of Dirac which states that if $\delta (G)\geq |G|/2$ then $G$ is Hamiltonian. In 1973, Bondy showed that, unless $G$ is a complete bipartite graph, Dirac’s Hamiltonicity condition also implies pancyclicity, i.e., existence of cycles of all the lengths from $3$ up to $n$. In this paper, we show that $\delta (G)\geq \tilde \alpha (G)$ implies that $G$ is pancyclic or that $G=K_{\frac{n}{2},\frac{n}{2}}$, thus extending the result of McDiarmid and Yolov, and generalizing the classic theorem of Bondy.
The protection number of a vertex $v$ in a tree is the length of the shortest path from $v$ to any leaf contained in the maximal subtree where $v$ is the root. In this paper, we determine the distribution of the maximum protection number of a vertex in simply generated trees, thereby refining a recent result of Devroye, Goh, and Zhao. Two different cases can be observed: if the given family of trees allows vertices of outdegree $1$, then the maximum protection number is on average logarithmic in the tree size, with a discrete double-exponential limiting distribution. If no such vertices are allowed, the maximum protection number is doubly logarithmic in the tree size and concentrated on at most two values. These results are obtained by studying the singular behaviour of the generating functions of trees with bounded protection number. While a general distributional result by Prodinger and Wagner can be used in the first case, we prove a variant of that result in the second case.
We give algorithms for approximating the partition function of the ferromagnetic $q$-color Potts model on graphs of maximum degree $d$. Our primary contribution is a fully polynomial-time approximation scheme for $d$-regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger’s algorithm to count cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high-temperature proof follows more standard polymer model analysis, our result holds in the largest-known range of parameters $d$ and $q$.