To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Minecraft is the most popular video game in history. Created by Markus “Notch” Persson using Java, it has sold more than 250 million copies since its first release in 2011. Minecraft is a sandbox-style game with no plot or required goals: Players explore an open three-dimensional world made of cubic blocks, and can mine for resources, craft items, and build. Every Minecraft world is effectively infinite and procedurally generated. Rather than having a fixed map, the game automatically generates new terrain as the player explores the world. The idea of procedurally generated game worlds goes back to some of the earliest computer games, including the highly influential Rogue (1980), which sent the player on a crawl through a brutally difficult random dungeon and inspired an entire genre of successors.
The walk matrix associated to an $n\times n$ integer matrix $\mathbf{X}$ and an integer vector $b$ is defined by ${\mathbf{W}} \,:\!=\, (b,{\mathbf{X}} b,\ldots, {\mathbf{X}}^{n-1}b)$. We study limiting laws for the cokernel of $\mathbf{W}$ in the scenario where $\mathbf{X}$ is a random matrix with independent entries and $b$ is deterministic. Our first main result provides a formula for the distribution of the $p^m$-torsion part of the cokernel, as a group, when $\mathbf{X}$ has independent entries from a specific distribution. The second main result relaxes the distributional assumption and concerns the ${\mathbb{Z}}[x]$-module structure.
The motivation for this work arises from an open problem in spectral graph theory, which asks to show that random graphs are often determined up to isomorphism by their (generalised) spectrum. Sufficient conditions for generalised spectral determinacy can, namely, be stated in terms of the cokernel of a walk matrix. Extensions of our results could potentially be used to determine how often those conditions are satisfied. Some remaining challenges for such extensions are outlined in the paper.
Given an $n\times n$ symmetric matrix $W\in [0,1]^{[n]\times [n]}$, let ${\mathcal G}(n,W)$ be the random graph obtained by independently including each edge $jk\in \binom{[n]}{2}$ with probability $W_{jk}=W_{kj}$. Given a degree sequence $\textbf{d}=(d_1,\ldots, d_n)$, let ${\mathcal G}(n,\textbf{d})$ denote a uniformly random graph with degree sequence $\textbf{d}$. We couple ${\mathcal G}(n,W)$ and ${\mathcal G}(n,\textbf{d})$ together so that asymptotically almost surely ${\mathcal G}(n,W)$ is a subgraph of ${\mathcal G}(n,\textbf{d})$, where $W$ is some function of $\textbf{d}$. Let $\Delta (\textbf{d})$ denote the maximum degree in $\textbf{d}$. Our coupling result is optimal when $\Delta (\textbf{d})^2\ll \|\textbf{d}\|_1$, that is, $W_{ij}$ is asymptotic to ${\mathbb P}(ij\in{\mathcal G}(n,\textbf{d}))$ for every $i,j\in [n]$. We also have coupling results for $\textbf{d}$ that are not constrained by the condition $\Delta (\textbf{d})^2\ll \|\textbf{d}\|_1$. For such $\textbf{d}$ our coupling result is still close to optimal, in the sense that $W_{ij}$ is asymptotic to ${\mathbb P}(ij\in{\mathcal G}(n,\textbf{d}))$ for most pairs $ij\in \binom{[n]}{2}$.
We study computational aspects of repulsive Gibbs point processes, which are probabilistic models of interacting particles in a finite-volume region of space. We introduce an approach for reducing a Gibbs point process to the hard-core model, a well-studied discrete spin system. Given an instance of such a point process, our reduction generates a random graph drawn from a natural geometric model. We show that the partition function of a hard-core model on graphs generated by the geometric model concentrates around the partition function of the Gibbs point process. Our reduction allows us to use a broad range of algorithms developed for the hard-core model to sample from the Gibbs point process and approximate its partition function. This is, to the extent of our knowledge, the first approach that deals with pair potentials of unbounded range.
Let $r$ be any positive integer. We prove that for every sufficiently large $k$ there exists a $k$-chromatic vertex-critical graph $G$ such that $\chi (G-R)=k$ for every set $R \subseteq E(G)$ with $|R|\le r$. This partially solves a problem posed by Erdős in 1985, who asked whether the above statement holds for $k \ge 4$.
Understand algorithms and their design with this revised student-friendly textbook. Unlike other algorithms books, this one is approachable, the methods it explains are straightforward, and the insights it provides are numerous and valuable. Without grinding through lots of formal proof, students will benefit from step-by-step methods for developing algorithms, expert guidance on common pitfalls, and an appreciation of the bigger picture. Revised and updated, this second edition includes a new chapter on machine learning algorithms, and concise key concept summaries at the end of each part for quick reference. Also new to this edition are more than 150 new exercises: selected solutions are included to let students check their progress, while a full solutions manual is available online for instructors. No other text explains complex topics such as loop invariants as clearly, helping students to think abstractly and preparing them for creating their own innovative ways to solve problems.
We use Stein’s method to obtain distributional approximations of subgraph counts in the uniform attachment model or random directed acyclic graph; we provide also estimates of rates of convergence. In particular, we give uni- and multi-variate Poisson approximations to the counts of cycles and normal approximations to the counts of unicyclic subgraphs; we also give a partial result for the counts of trees. We further find a class of multicyclic graphs whose subgraph counts are a.s. bounded as $n\to \infty$.
For given positive integers $r\ge 3$, $n$ and $e\le \binom{n}{2}$, the famous Erdős–Rademacher problem asks for the minimum number of $r$-cliques in a graph with $n$ vertices and $e$ edges. A conjecture of Lovász and Simonovits from the 1970s states that, for every $r\ge 3$, if $n$ is sufficiently large then, for every $e\le \binom{n}{2}$, at least one extremal graph can be obtained from a complete partite graph by adding a triangle-free graph into one part.
In this note, we explicitly write the minimum number of $r$-cliques predicted by the above conjecture. Also, we describe what we believe to be the set of extremal graphs for any $r\ge 4$ and all large $n$, amending the previous conjecture of Pikhurko and Razborov.
We consider the community detection problem in sparse random hypergraphs under the non-uniform hypergraph stochastic block model (HSBM), a general model of random networks with community structure and higher-order interactions. When the random hypergraph has bounded expected degrees, we provide a spectral algorithm that outputs a partition with at least a $\gamma$ fraction of the vertices classified correctly, where $\gamma \in (0.5,1)$ depends on the signal-to-noise ratio (SNR) of the model. When the SNR grows slowly as the number of vertices goes to infinity, our algorithm achieves weak consistency, which improves the previous results in Ghoshdastidar and Dukkipati ((2017) Ann. Stat.45(1) 289–315.) for non-uniform HSBMs.
Our spectral algorithm consists of three major steps: (1) Hyperedge selection: select hyperedges of certain sizes to provide the maximal signal-to-noise ratio for the induced sub-hypergraph; (2) Spectral partition: construct a regularised adjacency matrix and obtain an approximate partition based on singular vectors; (3) Correction and merging: incorporate the hyperedge information from adjacency tensors to upgrade the error rate guarantee. The theoretical analysis of our algorithm relies on the concentration and regularisation of the adjacency matrix for sparse non-uniform random hypergraphs, which can be of independent interest.
We derive a sufficient condition for a sparse random matrix with given numbers of non-zero entries in the rows and columns having full row rank. The result covers both matrices over finite fields with independent non-zero entries and $\{0,1\}$-matrices over the rationals. The sufficient condition is generally necessary as well.
Given a family of graphs $\mathcal{F}$ and an integer $r$, we say that a graph is $r$-Ramsey for $\mathcal{F}$ if any $r$-colouring of its edges admits a monochromatic copy of a graph from $\mathcal{F}$. The threshold for the classic Ramsey property, where $\mathcal{F}$ consists of one graph, in the binomial random graph was located in the celebrated work of Rödl and Ruciński.
In this paper, we offer a twofold generalisation to the Rödl–Ruciński theorem. First, we show that the list-colouring version of the property has the same threshold. Second, we extend this result to finite families $\mathcal{F}$, where the threshold statements might also diverge. This also confirms further special cases of the Kohayakawa–Kreuter conjecture. Along the way, we supply a short(-ish), self-contained proof of the $0$-statement of the Rödl–Ruciński theorem.
We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the $n \times n$ determinant tensor is no larger than the $n$-th Bell number, which is much smaller than the previously best-known upper bounds when $n \geq 4$. Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the $4 \times 4$ determinant over ${\mathbb{F}}_2$ has tensor rank exactly equal to $12$. Our results also improve upon the best-known upper bound for the Waring rank of the determinant when $n \geq 17$, and lead to a new family of axis-aligned polytopes that tile ${\mathbb{R}}^n$.
Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An $r$-daisy determined by a pair of disjoint sets $K$ and $M$ is the $(r+|K|)$-uniform hypergraph $\{K\cup P\,{:}\, P\in M^{(r)}\}$. Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of $r$-daisies and also for special cases where the size of the kernel is bounded.
A $(k+r)$-uniform hypergraph $H$ on $(k+m)$ vertices is an $(r,m,k)$-daisy if there exists a partition of the vertices $V(H)=K\cup M$ with $|K|=k$, $|M|=m$ such that the set of edges of $H$ is all the $(k+r)$-tuples $K\cup P$, where $P$ is an $r$-tuple of $M$. We obtain an $(r-2)$-iterated exponential lower bound to the Ramsey number of an $(r,m,k)$-daisy for $2$-colours. This matches the order of magnitude of the best lower bounds for the Ramsey number of a complete $r$-graph.
We investigate the list packing number of a graph, the least $k$ such that there are always $k$ disjoint proper list-colourings whenever we have lists all of size $k$ associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree $\Delta$ has list packing number at most $\Delta +1$. Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks’-type theorem for the list packing number.
We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each $k\geq 2$ and $1\leq \ell \leq k-1$, we show that every $k$-graph on $n$ vertices with minimum codegree at least
contains $\exp\!(n\log n-\Theta (n))$ Hamilton $\ell$-cycles as long as $(k-\ell )\mid n$. When $(k-\ell )\mid k$, this gives a simple proof of a result of Glock, Gould, Joos, Kühn, and Osthus, while when $(k-\ell )\nmid k$, this gives a weaker count than that given by Ferber, Hardiman, and Mond, or when $\ell \lt k/2$, by Ferber, Krivelevich, and Sudakov, but one that holds for an asymptotically optimal minimum codegree bound.
A linear equation $E$ is said to be sparse if there is $c\gt 0$ so that every subset of $[n]$ of size $n^{1-c}$ contains a solution of $E$ in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that $E$ in $k$ variables is abundant if every subset of $[n]$ of size $\varepsilon n$ contains at least $\text{poly}(\varepsilon )\cdot n^{k-1}$ solutions of $E$. It is clear that every abundant $E$ is sparse, and Girão, Hurley, Illingworth, and Michel asked if the converse implication also holds. In this note, we show that this is the case for every $E$ in four variables. We further discuss a generalisation of this problem which applies to all linear equations.
We study the noise sensitivity of the minimum spanning tree (MST) of the $n$-vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by $n^{1/3}$ and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability $\varepsilon \gg n^{-1/3}$, then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if $\varepsilon \ll n^{-1/3}$, the GHP distance between the rescaled trees goes to $0$ in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of $n^{-1/3}$ coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.
We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every $\delta \in (0,1)$ there exists $C = C(\delta ) \gt 0$ such that the following holds. Let $D_0$ be an $n$-vertex digraph with minimum semidegree at least $\delta n$ and suppose that each edge of the union of $D_0$ with a copy of the random digraph $\mathbf{D}(n,C/n)$ on the same vertex set gets a colour in $[n]$ independently and uniformly at random. Then, with high probability, $D_0 \cup \mathbf{D}(n,C/n)$ has a rainbow directed Hamilton cycle.
This improves a result of Aigner-Horev and Hefetz ((2021) SIAM J. Discrete Math.35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured uniformly in a set of $(1 + \varepsilon )n$ colours.
Online algorithms are a rich area of research with widespread applications in scheduling, combinatorial optimization, and resource allocation problems. This lucid textbook provides an easy but rigorous introduction to online algorithms for graduate and senior undergraduate students. In-depth coverage of most of the important topics is presented with special emphasis on elegant analysis. The book starts with classical online paradigms like the ski-rental, paging, list-accessing, bin packing, where performance of online algorithms is studied under the worst-case input and moves on to newer paradigms like 'beyond worst case', where online algorithms are augmented with predictions using machine learning algorithms. The book goes on to cover multiple applied problems such as routing in communication networks, server provisioning in cloud systems, communication with energy harvested from renewable sources, and sub-modular partitioning. Finally, a wide range of solved examples and practice exercises are included, allowing hands-on exposure to the concepts.