To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There exists a large gap between the empirical evidence of the computational capabilities of neural networks and our ability to systematically analyze and design those networks. Although it is well known that classical Fourier analysis is a very effective mathematical tool for the design and analysis of linear systems, such a tool was not available for artificial neural networks, which are inherently nonlinear. In the late 1980s, the spectral analysis tool was introduced in the domain of discrete neural networks. The application of the spectral technique led to a number of new insights and results, including lower and upper bounds on the complexity of computing with neural networks as well as methods for constructing optimal (in terms of performance) feedforward networks for computing various arithmetic functions.
The focus of the presentation in this chapter is on an elementary description of the basic techniques of Fourier analysis and its applications in threshold circuit complexity. Our hope is that this chapter will serve as background material for those who are interested in learning more about the progress and results in this area. We also provide extensive bibliographic notes that can serve as pointers to a number of research results related to spectral techniques and threshold circuit complexity.
String algorithms are a traditional area of study in computer science. In recent years their importance has grown dramatically with the huge increase of electronically stored text and of molecular sequence data (DNA or protein sequences) produced by various genome projects. This book is a general text on computer algorithms for string processing. In addition to pure computer science, the book contains extensive discussions on biological problems that are cast as string problems, and on methods developed to solve them. It emphasises the fundamental ideas and techniques central to today's applications. New approaches to this complex material simplify methods that up to now have been for the specialist alone. With over 400 exercises to reinforce the material and develop additional topics, the book is suitable as a text for graduate or advanced undergraduate students in computer science, computational biology, or bio-informatics. Its discussion of current algorithms and techniques also makes it a reference for professionals.
The repetition threshold is a measure of the extent to whichthere need to be consecutive (partial) repetitions of finitewords within infinite wordsover alphabets of various sizes. Dejean's Conjecture, which hasbeen recently proven, provides this threshold for all alphabetsizes. Motivated by a question of Krieger, we deal here withthe analogous threshold when the infinite word is restricted to be a D0Lword. Our main result is that, asymptotically, this thresholddoes not exceed the unrestricted threshold by more than a little.
We present parallel algorithms on the BSP/CGM model, with p processors, to count and generate all the maximal cliques of a circle graph with n verticesand m edges. To count the number of all the maximal cliques, without actuallygenerating them, our algorithm requires O(log p) communicationrounds with O(nm/p) local computation time.We also present an algorithm to generate the first maximal clique in O(log p) communication rounds with O(nm/p) local computation,and to generate each one of the subsequent maximal cliques thisalgorithm requires O(log p) communication rounds with O(m/p) localcomputation.The maximal cliques generation algorithm is based on generating all maximal paths in a directed acyclic graph, and we present analgorithm for this problem that uses O log (p) communication roundswith O(m/p) local computation for each maximal path.We also show that the presented algorithms can be extended to the CREWPRAM model.
Let G be a fixed connected multigraph with no loops. A random n-lift of G is obtained by replacing each vertex of G by a set of n vertices (where these sets are pairwise disjoint) and replacing each edge by a randomly chosen perfect matching between the n-sets corresponding to the endpoints of the edge. Let XG be the number of perfect matchings in a random lift of G. We study the distribution of XG in the limit as n tends to infinity, using the small subgraph conditioning method.
We present several results including an asymptotic formula for the expectation of XG when G is d-regular, d ≥ 3. The interaction of perfect matchings with short cycles in random lifts of regular multigraphs is also analysed. Partial calculations are performed for the second moment of XG, with full details given for two example multigraphs, including the complete graph K4.
To assist in our calculations we provide a theorem for estimating a summation over multiple dimensions using Laplace's method. This result is phrased as a summation over lattice points, and may prove useful in future applications.
We investigate decompositions of a graph into a small number of low-diameter subgraphs. Let P(n, ε, d) be the smallest k such that every graph G = (V, E) on n vertices has an edge partition E = E0 ∪ E1 ∪ ⋅⋅⋅ ∪ Ek such that |E0| ≤ εn2, and for all 1 ≤ i ≤ k the diameter of the subgraph spanned by Ei is at most d. Using Szemerédi's regularity lemma, Polcyn and Ruciński showed that P(n, ε, 4) is bounded above by a constant depending only on ε. This shows that every dense graph can be partitioned into a small number of ‘small worlds’ provided that a few edges can be ignored. Improving on their result, we determine P(n, ε, d) within an absolute constant factor, showing that P(n, ε, 2) = Θ(n) is unbounded for ε < 1/4, P(n, ε, 3) = Θ(1/ε2) for ε > n−1/2 and P(n, ε, 4) = Θ(1/ε) for ε > n−1. We also prove that if G has large minimum degree, all the edges of G can be covered by a small number of low-diameter subgraphs. Finally, we extend some of these results to hypergraphs, improving earlier work of Polcyn, Rödl, Ruciński and Szemerédi.
We consider the problem of testing expansion in bounded-degree graphs. We focus on the notion of vertex expansion: an α-expander is a graph G = (V, E) in which every subset U ⊆ V of at most |V|/2 vertices has a neighbourhood of size at least α ⋅ |U|. Our main result is that one can distinguish good expanders from graphs that are far from being weak expanders in time . We prove that the property-testing algorithm proposed by Goldreich and Ron with appropriately set parameters accepts every α-expander with probability at least and rejects every graph that is ϵ-far from any α*-expander with probability at least , where and d is the maximum degree of the graphs. The algorithm assumes the bounded-degree graphs model with adjacency list graph representation and its running time is .
We study the ‘rank 1 case’ of the inhomogeneous random graph model. In the subcritical case we derive an exact formula for the asymptotic size of the largest connected component scaled to log n. This result complements the corresponding known result in the supercritical case. We provide some examples of applications of the derived formula.
By
Mike Atkinson, Department of Computer Science University of Otago Dunedin New Zealand
Edited by
Steve Linton, University of St Andrews, Scotland,Nik Ruškuc, University of St Andrews, Scotland,Vincent Vatter, Dartmouth College, New Hampshire
Permuting machines were the early inspiration of the theory of permutation pattern classes. Some examples are given which lead up to distilling the key properties that link them to pattern classes. It is shown how relatively simple ways of combining permuting machines can lead to quite complex behaviour and that the notion of regularity can sometimes be used to contain this complexity. Machines which are sensitive to their input data values are shown to be connected to a more general notion than pattern classes. Finally some open problems are presented.
Introduction
Although permutation patterns have only recently been studied in a systematic manner their history can be traced back many decades. It could be argued that the well-known lemma of Erdős and Szekeres is really a result about pattern classes (a pattern class whose basis contains both an increasing and a decreasing permutation is necessarily finite). However it is perhaps more convincing to attribute the birth of the subject to the ground-breaking first volume of Donald Knuth's Art of Computer Programming series. In the main body of his text, and in some fascinating follow-up exercises, Knuth enumerated some pattern classes, and found some bases, while at the same time introducing some techniques on generating functions that, in due time, were codified as “the kernel method”.
By
Sergey Kitaev, The Mathematics Institute Reykjavík University IS-103 Reykjavík, Iceland
Edited by
Steve Linton, University of St Andrews, Scotland,Nik Ruškuc, University of St Andrews, Scotland,Vincent Vatter, Dartmouth College, New Hampshire
The paper offers an overview over selected results in the literature on partially ordered patterns (POPs) in permutations, words and compositions. The POPs give rise in connection with co-unimodal patterns, peaks and valleys in permutations, Horse permutations, Catalan, Narayana, and Pell numbers, bi-colored set partitions, and other combinatorial objects.
Introduction
An occurrence of a pattern τ in a permutation π is defined as a subsequence in π (of the same length as τ) whose letters are in the same relative order as those in τ. For example, the permutation 31425 has three occurrences of the pattern 1-2-3, namely the subsequences 345, 145, and 125. Generalized permutation patterns (GPs) being introduced in allow the requirement that some adjacent letters in a pattern must also be adjacent in the permutation. We indicate this requirement by removing a dash in the corresponding place. Say, if pattern 2-31 occurs in a permutation π, then the letters in π that correspond to 3 and 1 are adjacent. For example, the permutation 516423 has only one occurrence of the pattern 2-31, namely the subword 564, whereas the pattern 2-3-1 occurs, in addition, in the subwords 562 and 563. Placing “[” on the left (resp., “]” on the right) next to a pattern p means the requirement that p must begin (resp., end) from the leftmost (resp., rightmost) letter.
By
Michael Albert, Department of Computer Science University of Otago Dunedin New Zealand
Edited by
Steve Linton, University of St Andrews, Scotland,Nik Ruškuc, University of St Andrews, Scotland,Vincent Vatter, Dartmouth College, New Hampshire
Structural methods as applied to the study of classical permutation pattern avoidance are introduced and described. These methods allow for more detailed study of pattern classes, answering questions beyond basic enumeration. Additionally, they frequently can be applied wholesale, producing results valid for a wide collection of pattern classes, rather than simply ad hoc application to individual classes.
Introduction
In the study of permutation patterns, the important aspects of permutations of [n] = {1, 2, …, n} are considered to be the relative order of both the argument and the value. Specifically, we study a partial order, denoted ≼ and called involvement, on the set of such permutations where π ∈ Sk is involved in σ ∈ Sn, i.e. π ≼ σ if, for some increasing function f : [k] → [n] and all 1 ≤ i < j ≤ k, σ(i) < σ(j) if and only if π(f(i)) < π(f(j)). This dry and uninformative definition is necessary to get us started, but the reader should certainly be aware that another definition of involvement is that some of the points in the graph of π can be erased so that what remains is the graph of σ (possibly with a non-uniform scale on both axes) – in other words the pattern of σ (its graph) occurs as part of the pattern of π.
By
Toufik Mansour, Department of Mathematics Haifa University 31905 Haifa, Israel,
Augustine O. Munagi, The John Knopfmacher Centre for Applicable Analysis and Number Theory School of Mathematics University of the Witwatersrand Johannesburg 2050, South Africa
Edited by
Steve Linton, University of St Andrews, Scotland,Nik Ruškuc, University of St Andrews, Scotland,Vincent Vatter, Dartmouth College, New Hampshire
A descent in a permutation α1α2 · αn is an index i for which αi > αi+1. The number of descents in a permutation is a classical permutation statistic which was first studied by P. A. MacMahon almost a hundred years ago, and it still plays an important role in the study of permutations. Representing set partitions by equivalent canonical sequences of integers, we study this statistic among the set partitions, as well as the numbers of rises and levels. We enumerate set partitions with respect to these statistics by means of generating functions, and present some combinatorial proofs. Applications are obtained to new combinatorial results and previously-known ones.
Introduction
A descent in a permutation α = α1α2 ··· αn is an index i for which αi > αi+1. The number of descents in a permutation is a classical permutation statistic. This statistic was first studied by MacMahon, and it still plays an important role in the study of permutation statistics. In this paper we study the statistics of numbers of rises, levels and descents among set partitions expressed as canonical sequences, defined below.
By
Einar Steingrímsson, The Mathematics Institute Reykjavík University IS-103 Reykjavík, Iceland
Edited by
Steve Linton, University of St Andrews, Scotland,Nik Ruškuc, University of St Andrews, Scotland,Vincent Vatter, Dartmouth College, New Hampshire
An occurrence of a classical pattern p in a permutation π is a subsequence of π whose letters are in the same relative order (of size) as those in p. In an occurrence of a generalized pattern some letters of that subsequence may be required to be adjacent in the permutation. Subsets of permutations characterized by the avoidance–or the prescribed number of occurrences–of generalized patterns exhibit connections to an enormous variety of other combinatorial structures, some of them apparently deep. We give a short overview of the state of the art for generalized patterns.
Introduction
Patterns in permutations have been studied sporadically, often implicitly, for over a century, but in the last two decades this area has grown explosively, with several hundred published papers. As seems to be the case with most things in enumerative combinatorics, some instances of permutation patterns can be found already in MacMahon's classical book from 1915, Combinatory Analysis. In the seminal paper Restricted permutations of Simion and Schmidt from 1985 the systematic study of permutation patterns was launched, and it now seems clear that this field will continue growing for a long time to come, due to its plethora of problems that range from the easy to the seemingly impossible, with a rich middle ground of challenging but solvable problems.
By
Martin Klazar, Department of Applied Mathematics Charles University 118 00 Praha Czech Republic
Edited by
Steve Linton, University of St Andrews, Scotland,Nik Ruškuc, University of St Andrews, Scotland,Vincent Vatter, Dartmouth College, New Hampshire
This survey article is devoted to general results in combinatorial enumeration. The first part surveys results on growth of hereditary properties of combinatorial structures. These include permutations, ordered and unordered graphs and hypergraphs, relational structures, and others. The second part advertises four topics in general enumeration: 1. counting lattice points in lattice polytopes, 2. growth of context-free languages, 3. holonomicity (i.e., P-recursiveness) of numbers of labeled regular graphs and 4. ultimate modular periodicity of numbers of MSOL-definable structures.
Introduction
We survey some general results in combinatorial enumeration. A problem in enumeration is (associated with) an infinite sequence P = (S1, S2, …) of finite sets Si. Its counting function fP is given by fP (n) = |Sn|, the cardinality of the set Sn. We are interested in results of the following kind on general classes of problems and their counting functions.
Scheme of general results in combinatorial enumeration. The counting function fP of every problem P in the class C belongs to the class of functions F. Formally, {fP | P ∈ C} ⊂ F.
The larger C is, and the more specific the functions in F are, the stronger the result. The present overview is a collection of many examples of this scheme.
By
Cathleen Battiste Presutti, Department of Mathematics Ohio University - Lancaster Lancaster, Ohio 43130 USA,
Walter Stromquist, Department of Mathematics and Statistics Swarthmore College Swarthmore, Pennsylvania 19081 USA
Edited by
Steve Linton, University of St Andrews, Scotland,Nik Ruškuc, University of St Andrews, Scotland,Vincent Vatter, Dartmouth College, New Hampshire
Edited by
Steve Linton, University of St Andrews, Scotland,Nik Ruškuc, University of St Andrews, Scotland,Vincent Vatter, Dartmouth College, New Hampshire
Edited by
Steve Linton, University of St Andrews, Scotland,Nik Ruškuc, University of St Andrews, Scotland,Vincent Vatter, Dartmouth College, New Hampshire
We say a permutation π contains or involves the permutation σ if deleting some of the entries of π gives a permutation that is order isomorphic to σ, and we write σ ≤ π. For example, 534162 contains 321 (delete the values 4, 6, and 2). A permutation avoids a permutation if it does not contain it.
This notion of containment defines a partial order on the set of all finite permutations, and the downsets of this order are called permutation classes. For a set of permutations B define Av(B) to be the set of permutations that avoid all of the permutations in B. Clearly Av(B) is a permutation class for every set B, and conversely, every permutation class can be expressed in the form Av(B).
For the problems we need one more bit of notation. Given permutations π and σ of lengths m and n, respectively, their direct sum, π ⊕ σ, is the permutation of length m + n in which the first m entries are equal to π and the last n entries are order isomorphic to σ while their skew sum, π ⊖ σ, is the permutation of length m + n in which the first m entries are order isomorphic to π while the last n entries are equal to π.