To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a non-increasing tree growth process $((T_n,{\sigma}_n),\, n\ge 1)$, where Tn is a rooted labelled tree on n vertices and σn is a permutation of the vertex labels. The construction of (Tn, σn) from (Tn−1, σn−1) involves rewiring a random (possibly empty) subset of edges in Tn−1 towards the newly added vertex; as a consequence Tn−1 ⊄ Tn with positive probability. The key feature of the process is that the shape of Tn has the same law as that of a random recursive tree, while the degree distribution of any given vertex is not monotone in the process.
We present two applications. First, while couplings between Kingman’s coalescent and random recursive trees were known for any fixed n, this new process provides a non-standard coupling of all finite Kingman’s coalescents. Second, we use the new process and the Chen–Stein method to extend the well-understood properties of degree distribution of random recursive trees to extremal-range cases. Namely, we obtain convergence rates on the number of vertices with degree at least $c\ln n$, c ∈ (1, 2), in trees with n vertices. Further avenues of research are discussed.
Let $\gamma(G)$ and $${\gamma _ \circ }(G)$$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n-vertex graph of minimum degree at least d, then
$$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$
In this paper the main result is that if G is any n-vertex d-regular graph of girth at least five, then
$$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$
for some constant c independent of d. This result is sharp in the sense that as $d \rightarrow \infty$, almost all d-regular n-vertex graphs G of girth at least five have
Furthermore, if G is a disjoint union of ${n}/{(2d)}$ complete bipartite graphs $K_{d,d}$, then ${\gamma_\circ}(G) = \frac{n}{2}$. We also prove that there are n-vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that ${\gamma_\circ}(G) \sim {n}/{2}$ as $d \rightarrow \infty$. Therefore both the girth and regularity conditions are required for the main result.
A k-uniform tight cycle $C_s^k$ is a hypergraph on s > k vertices with a cyclic ordering such that every k consecutive vertices under this ordering form an edge. The pair (k, s) is admissible if gcd (k, s) = 1 or k / gcd (k,s) is even. We prove that if $s \ge 2{k^2}$ and H is a k-uniform hypergraph with minimum codegree at least (1/2 + o(1))|V(H)|, then every vertex is covered by a copy of $C_s^k$. The bound is asymptotically sharp if (k, s) is admissible. Our main tool allows us to arbitrarily rearrange the order in which a tight path wraps around a complete k-partite k-uniform hypergraph, which may be of independent interest.
For hypergraphs F and H, a perfect F-tiling in H is a spanning collection of vertex-disjoint copies of F. For $k \ge 3$, there are currently only a handful of known F-tiling results when F is k-uniform but not k-partite. If s ≢ 0 mod k, then $C_s^k$ is not k-partite. Here we prove an F-tiling result for a family of non-k-partite k-uniform hypergraphs F. Namely, for $s \ge 5{k^2}$, every k-uniform hypergraph H with minimum codegree at least (1/2 + 1/(2s) + o(1))|V(H)| has a perfect $C_s^k$-tiling. Moreover, the bound is asymptotically sharp if k is even and (k, s) is admissible.
We employ the absorbing-path method in order to prove two results regarding the emergence of tight Hamilton cycles in the so-called two-path or cherry-quasirandom 3-graphs.
Our first result asserts that for any fixed real α > 0, cherry-quasirandom 3-graphs of sufficiently large order n having minimum 2-degree at least α(n – 2) have a tight Hamilton cycle.
Our second result concerns the minimum 1-degree sufficient for such 3-graphs to have a tight Hamilton cycle. Roughly speaking, we prove that for every d, α > 0 satisfying d + α > 1, any sufficiently large n-vertex such 3-graph H of density d and minimum 1-degree at least $\alpha \left({\matrix{{n - 1} \cr 2 \cr } } \right)$ has a tight Hamilton cycle.
For a real constant α, let $\pi _3^\alpha (G)$ be the minimum of twice the number of K2’s plus α times the number of K3’s over all edge decompositions of G into copies of K2 and K3, where Kr denotes the complete graph on r vertices. Let $\pi _3^\alpha (n)$ be the maximum of $\pi _3^\alpha (G)$ over all graphs G with n vertices.
The extremal function $\pi _3^3(n)$ was first studied by Győri and Tuza (Studia Sci. Math. Hungar.22 (1987) 315–320). In recent progress on this problem, Král’, Lidický, Martins and Pehova (Combin. Probab. Comput.28 (2019) 465–472) proved via flag algebras that$\pi _3^3(n) \le (1/2 + o(1)){n^2}$. We extend their result by determining the exact value of $\pi _3^\alpha (n)$ and the set of extremal graphs for all α and sufficiently large n. In particular, we show for α = 3 that Kn and the complete bipartite graph ${K_{\lfloor n/2 \rfloor,\lceil n/2 \rceil }}$ are the only possible extremal examples for large n.
In this chapter, geometric construction possibilities that go beyond traditional origami are described.Multifolds, which are origami operations that allow for the simultaneous creation of more than one crease, are the main focus of the chapter.Multifolds provide more algebraic power to origami constructions, and multifold methods of performing angle quintisections and 11-gons are described.Alperin and Lang’s proof that multifold origami can find roots of arbitrary polynomials is given.Origami constructions that include curved creases are also explored, showing that they can allow the construction of some transcendental numbers.
Chapter 6 covers global flat foldability.This includes determining how we can tell if a crease pattern with multiple vertices will fold flat without forcing the paper to self-intersect, as well as discovering properties that all such crease patterns have, beyond what was covered in the previous chapter.Justin’s Theorem, which is a generalization of Kawasaki’s and Maekawa’s Theorems and whose proof uses elements of basic knot theory, is covered, as are Justin’s non-crossing conditions that provide necessary and sufficient conditions for a general crease pattern to fold flat.The matrix model from Chapter 5 is developed further to create a formal folding map for flat origami.Finally, Bern and Hayes’ seminal proof that determining flat foldability of a given crease pattern is NP-Hard is presented and updated with more recent results on box pleating.
In this chapter, tools from analysis are brought to bear on flat foldings of high-dimensional Euclidean space. The exposition follows the work of Dacorogna, Marcellini, and Paolini from 2008, who discovered that high-dimensional flat folding maps, which they call rigid maps, can be solutions to certain Dirichlet partial differential equations. This approach offers a different proof of the Recovery Theorem from Lawrence and Spingarn (1989), and the folding maps that result from Dirichlet problems can sometimes have crease patterns that exhibit interesting self-similarity.
Chapter 8 covers a variety of other mathematical problems that arise from flat origami.For example, how many times can you fold a piece of paper in half?This old question has a more interesting answer, discovered by a high-school student, than is commonly known.Can any shape be folded?Origami artists want to claim that the answer to this question is, “Yes,” but how should the question be formalized mathematically?And if we really can fold anything, how do we do so?The process of origami design can be quantified, and the ways in which complex origami designers do so to, say, create an origami insect are summarized.Another origami puzzle with a surprising answer is:If a square piece of paper is folded into a flat object, what is the biggest perimeter that object can have?Finally, we summarize the theory behind, and proof of, the famous Fold-and-One-Cut Theorem.
In this chapter, proofs are given that origami can solve quadratic and cubic equations.For example, when folding a point onto a line the resultingcrease line is tangent to a parabola.Methods used include Lill’s Method for geometrically finding real roots of arbitrary polynomials and Margherita Beloch’s solution to solving cubics from the 1930s.
The field of flat-foldable origami is introduced, which involves a mix of geometry and combinantorics.This chapter focuses on local properties of flat origami, meaning the study of how and when a single vertex in an origami crease pattern will be able to fold flat.The classic theorems of Kawasaki and Maekawa are proved and generalizations are made to folding vertices on cone-shaped (i.e., non-developable) paper.The problem of counting valid mountain-valley assignments of flat-foldable vertices is solved, and the configuration space of flat-foldable vertices of a fixed degree is characterized.A matrix model for formalizing flat-vertex folds is introduced, and the chapter ends with historical notes on this topic.
The field of origami numbers in the complex plane that are constructible by straight-line, one-crease-at-a-time origami is characterized to be the smallest subfield of the complex numbers that can be obtained by 2-3 towers of extension fields.Other ways to describe this field are also discussed.
Chapter 7 delves into a handful of combinatorial problems in flat origami theory that are more general than the single-vertex problems considered in Chapter 5. First, we count the number of locally-valid mountain-valley assignments of certain origami tessellations, like the square twist and Miura-ori tessellations. Then the stamp-folding problem is discussed, where the crease pattern is a grid of squares and we want to fold them into a one-stamp pile in as many ways as possible.Then the tethered membrane model of polymer folding is considered from soft-matter physics, which translates into origami as counting the number of flat-foldable crease patterns that can be made as a subset of edges from the regular triangle lattice.Many of these problems establish connections between flat foldings and graph colorings and statistical mechanics.
The final chapter considers more theoretical aspects of rigid origami.The first section outlines a proof that deciding whether or not an origami crease pattern can be rigidly folded from the unfolded state using some subset of the creases is NP-hard.Then configuration spaces of rigid origami crease patterns are discussed in more depth than in the previous chapter, including a proof that the germ of single-vertex rigid origami configuration spaces is isomorphic to the germ of a quadratic form.Examples of disconnected rigid origami configuration spaces are also included.The chapter, and book, ends with an introduction to the theory of self-folding, where we imagine that a crease pattern is rigidly folded using actuators on the creases, and we wish for these actuators to fold the crease pattern to a target state and not to some other rigid origami state.The aim is to characterize when simple actuating forces can do this, and we present the current theory behind this as well as its limitations.
This introduction discusses the intricacies of origami art, how origami has become popular in science and engineering applications in the 2000s, and the author's motivation for writing this book.