To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Several discrete geometry problems are equivalent to estimating the size of the largest homogeneous sets in graphs that happen to be the union of few comparability graphs. An important observation for such results is that if G is an n-vertex graph that is the union of r comparability (or more generally, perfect) graphs, then either G or its complement contains a clique of size $n^{1/(r+1)}$.
This bound is known to be tight for $r=1$. The question whether it is optimal for $r\ge 2$ was studied by Dumitrescu and Tóth. We prove that it is essentially best possible for $r=2$, as well: we introduce a probabilistic construction of two comparability graphs on n vertices, whose union contains no clique or independent set of size $n^{1/3+o(1)}$.
Using similar ideas, we can also construct a graph G that is the union of r comparability graphs, and neither G nor its complement contain a complete bipartite graph with parts of size $cn/{(log n)^r}$. With this, we improve a result of Fox and Pach.
In this work we consider three well-studied broadcast protocols: push, pull and push&pull. A key property of all these models, which is also an important reason for their popularity, is that they are presumed to be very robust, since they are simple, randomized and, crucially, do not utilize explicitly the global structure of the underlying graph. While sporadic results exist, there has been no systematic theoretical treatment quantifying the robustness of these models. Here we investigate this question with respect to two orthogonal aspects: (adversarial) modifications of the underlying graph and message transmission failures.
We explore in particular the following notion of local resilience: beginning with a graph, we investigate up to which fraction of the edges an adversary may delete at each vertex, so that the protocols need significantly more rounds to broadcast the information. Our main findings establish a separation among the three models. On one hand, pull is robust with respect to all parameters that we consider. On the other hand, push may slow down significantly, even if the adversary may modify the degrees of the vertices by an arbitrarily small positive fraction only. Finally, push&pull is robust when no message transmission failures are considered, otherwise it may be slowed down.
On the technical side, we develop two novel methods for the analysis of randomized rumour-spreading protocols. First, we exploit the notion of self-bounding functions to facilitate significantly the round-based analysis: we show that for any graph the variance of the growth of informed vertices is bounded by its expectation, so that concentration results follow immediately. Second, in order to control adversarial modifications of the graph we make use of a powerful tool from extremal graph theory, namely Szemerédi’s Regularity Lemma.
A well-known observation of Lovász is that if a hypergraph is not 2-colourable, then at least one pair of its edges intersect at a single vertex. In this short paper we consider the quantitative version of Lovász’s criterion. That is, we ask how many pairs of edges intersecting at a single vertex should belong to a non-2-colourable n-uniform hypergraph. Our main result is an exact answer to this question, which further characterizes all the extremal hypergraphs. The proof combines Bollobás’s two families theorem with Pluhar’s randomized colouring algorithm.
We give a fully polynomial-time randomized approximation scheme (FPRAS) for the number of bases in bicircular matroids. This is a natural class of matroids for which counting bases exactly is #P-hard and yet approximate counting can be done efficiently.
Given a fixed graph H, a real number p(0, 1) and an infinite Erdös–Rényi graph G ∼ G(∞, p), how many adjacency queries do we have to make to find a copy of H inside G with probability at least 1/2? Determining this number f(H, p) is a variant of the subgraph query problem introduced by Ferber, Krivelevich, Sudakov and Vieira. For every graph H, we improve the trivial upper bound of f(H, p) = O(p−d), where d is the degeneracy of H, by exhibiting an algorithm that finds a copy of H in time O(p−d) as p goes to 0. Furthermore, we prove that there are 2-degenerate graphs which require p−2+o(1) queries, showing for the first time that there exist graphs H for which f(H, p) does not grow like a constant power of p−1 as p goes to 0. Finally, we answer a question of Feige, Gamarnik, Neeman, Rácz and Tetali by showing that for any δ < 2, there exists α < 2 such that one cannot find a clique of order α log2n in G(n, 1/2) in nδ queries.
The triangle packing number v(G) of a graph G is the maximum size of a set of edge-disjoint triangles in G. Tuza conjectured that in any graph G there exists a set of at most 2v(G) edges intersecting every triangle in G. We show that Tuza’s conjecture holds in the random graph G = G(n, m), when m ⩽ 0.2403n3/2 or m ⩾ 2.1243n3/2. This is done by analysing a greedy algorithm for finding large triangle packings in random graphs.
A celebrated theorem of Pippenger states that any almost regular hypergraph with small codegrees has an almost perfect matching. We show that one can find such an almost perfect matching which is ‘pseudorandom’, meaning that, for instance, the matching contains as many edges from a given set of edges as predicted by a heuristic argument.
We show that, for a constant-degree algebraic curve γ in ℝD, every set of n points on γ spans at least Ω(n4/3) distinct distances, unless γ is an algebraic helix, in the sense of Charalambides [2]. This improves the earlier bound Ω(n5/4) of Charalambides [2].
We also show that, for every set P of n points that lie on a d-dimensional constant-degree algebraic variety V in ℝD, there exists a subset S ⊂ P of size at least Ω(n4/(9+12(d−1))), such that S spans $\left({\begin{array}{*{20}{c}} {|S|} \\ 2 \\\end{array}} \right)$ distinct distances. This improves the earlier bound of Ω(n1/(3d)) of Conlon, Fox, Gasarch, Harris, Ulrich and Zbarsky [4].
Both results are consequences of a common technical tool.