We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Deep nets have done well with early adopters, but the future will soon depend on crossing the chasm. The goal of this paper is to make deep nets more accessible to a broader audience including people with little or no programming skills, and people with little interest in training new models. A github is provided with simple implementations of image classification, optical character recognition, sentiment analysis, named entity recognition, question answering (QA/SQuAD), machine translation, speech to text (SST), and speech recognition (STT). The emphasis is on instant gratification. Non-programmers should be able to install these programs and use them in 15 minutes or less (per program). Programs are short (10–100 lines each) and readable by users with modest programming skills. Much of the complexity is hidden behind abstractions such as pipelines and auto classes, and pretrained models and datasets provided by hubs: PaddleHub, PaddleNLP, HuggingFaceHub, and Fairseq. Hubs have different priorities than research. Research is training models from corpora and fine-tuning them for tasks. Users are already overwhelmed with an embarrassment of riches (13k models and 1k datasets). Do they want more? We believe the broader market is more interested in inference (how to run pretrained models on novel inputs) and less interested in training (how to create even more models).
Astronomers depend on light for their understanding of the cosmos beyond the confines of the Solar System. Many of the most exciting discoveries over the last couple of decades were made possible by new generations of cameras and telescopes, both on the ground and in space. The resulting observations captured the imagination not just of the scientists but also of the general public. Dr Crawford will discuss the new facilities anticipated coming online over the next ten years or so – how they’ll not only change our view of the Universe, but also alter the way we do Astronomy.
Can we trust the judgement of machines that see? Computer vision is being entrusted with ever more critical tasks: from access control by face recognition, to diagnosis of disease from medical scans and hand-eye coordination for surgical and nuclear decommissioning robots, and now to taking control of motor vehicles.