To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Numerous new properties of stochastic conditional independence are introduced. They are aimed, together with two surprisingly trivial examples, at a further reduction of the problem of probabilistic representability for four-element sets, i.e. of the problem which conditional independences within a system of four random variables can occur simultaneously. Proofs are based on fundamental properties of conditional independence and, in the discrete case, on the use of I-divergence and algebraic manipulations with marginal probabilities. A duality question is answered in the negative.
In [11] it is shown that the theory of almost all graphs is first-order complete. Furthermore, in [3] a collection of first-order axioms are given from which any first-order property or its negation can be deduced. Here we show that almost all Steinhaus graphs satisfy the axioms of almost all graphs and conclude that a first-order property is true for almost all graphs if and only if it is true for almost all Steinhaus graphs. We also show that certain classes of subgraphs of vertex transitive graphs are first-order complete. Finally, we give a new class of higher-order axioms from which it follows that large subgraphs of specified type exist in almost all graphs.
Along different curves and at different points of the (x, y)-plane the Tutte polynomial evaluates a wide range of quantities. Some of these, such as the number of spanning trees of a graph and the partition function of the planar Ising model, can be computed in polynomial time, others are # P-hard. Here we give a complete characterisation of which points and curves are easy/hard in the bipartite case.
Let ℱn be the set of random mappings ϕ : {1,…,n} → {1,…,n} (such that every mapping is equally likely). For x ε {l,…,n} the elements are called the predecessors of x. Let Nr denote the random variable which counts the number of points x ε {l,…,n} with exactly r predecessors. In this paper we identify the limiting distribution of Nr as n → ∞. If r = r(n) = o(n⅔) then the limiting distribution is Gaussian, if r ˜ Cn⅔ then it is Poisson, and in the remaining case rn−⅔ → ∞ it is degenerate. Furthermore, it is shown that Nr is a Poisson approximation if r → ∞.
For T ∈ GLn (Fq), let Ωn (t, T) be the number of irreducible factors of degree less than or equal to nt in the characteristic polynomial of T. Let
and suppose T is chosen from G Ln(Fq) at random uniformly. We prove that the stochastic process ≺Zn(t)≻t∈[0, 1] converges to the standard Brownian motion process W(t), as n → ∞.
It is shown that unless NP collapses to random polynomial time RP, there can be no fully polynomial randomised approximation scheme for the antiferromagnetic version of the Q-state Potts model.
The Erdős-Turán law gives a normal approximation for the order of a randomly chosen permutation of n objects. In this paper, we provide a sharp error estimate for the approximation, showing that, if the mean of the approximating normal distribution is slightly adjusted, the error is of order log−1/2n.
We prove that the probability i(n, k) that a random permutation of an n element set has an invariant subset of precisely k elements decreases as a power of k, for k ≤ n/2. Using this fact, we prove that the fraction of elements of Sn belong to transitive subgroups other than Sn or An tends to 0 when n → ∞, as conjectured by Cameron. Finally, we show that for every ∈ > 0 there exists a constant C such that C elements of the symmetric group Sn, chosen randomly and independently, generate invariably Sn with probability at least 1 − ∈. This confirms a conjecture of McKay.
Ramsey numbers for matroids, which mimic properties of Ramsey numbers for graphs, have been denned as follows. Let k and l be positive integers. Then n(k, l) is the least positive integer n such that every connected matroid with n elements contains either a circuit with at least k elements or a cocircuit with at least l elements. We determine the largest known value of these numbers in the sense of maximizing both k and l. We also find extremal matroids with small circuits and cocircuits. Results on matroid connectivity, geometry, and extremal matroid theory are used here.
The choice number of a graph G is the minimum integer k such that for every assignment of a set S(v) of k colors to every vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from S(v). By applying probabilistic methods, it is shown that there are two positive constants c1 and c2 such that for all m ≥ 2 and r ≥ 2 the choice number of the complete r-partite graph with m vertices in each vertex class is between c1r log m and c2r log m. This supplies the solutions of two problems of Erdős, Rubin and Taylor, as it implies that the choice number of almost all the graphs on n vertices is o(n) and that there is an n vertex graph G such that the sum of the choice number of G with that of its complement is at most O(n1/2(log n)1/2).
In this paper we solve the following problem on the lattice graph L(m1,…,mn) and the Hamming graph H(m1,…,mn), generalizing a result of Felzenbaum-Holzman-Kleitman on the n-dimensional cube (all mi = 2): Characterize the vectors (s1.…,sn) such that there exists a maximum matching in L, respectively, H with exactly si edges in the ith direction.
We focus our attention on the class RMAX(2) of NP optimization problems. Owing to recent developments in interactive proof techniques, RMAX(2) was shown to be the lowest class of logical classification that contains problems hard to approximate. Namely, the RMAX(2)-complete problem MAX CLIQUE (of finding the size of the largest clique in a graph) is not approximable in polynomial time within any constant factor unless NP=P.
We are interested in problems inside RMAX(2) that are not known to be complete but are still hard to approximate. We point out that one such problem is MAXlog n, n, considered by Berman and Schnitger: given m conjunctions, each of them consisting of log m propositional variables or their negations, find the maximal number of simultaneously satisfiable conjunctions. We also obtain the approximation hardness results for some other problems in RMAX(2). Finally, we discuss the question of whether or not the problems under consideration are RMAX(2)-complete.
We consider a «Maker-Breaker’ version of the Ramsey Graph Game, RG(n), and present a winning strategy for Maker requiring at most (n − 3)2n−1 + n + 1 moves. This is the fastest winning strategy known so far. We also demonstrate how the ideas presented can be used to develop winning strategies for some related combinatorial games.
We show distributional results for the length of the longest matching consecutive subsequence between two independent sequences A1, A2, …, Am and B1, B2, …, Bn whose letters are taken from a finite alphabet. We assume that A1, A2, … are i.i.d. with distribution μ and B1, B2, … are i.i.d. with distribution ν. It is known that if μ and v are not too different, the Chen–Stein method for Poisson approximation can be used to establish distributional results. We extend these results beyond the region where the Chen–Stein method was previously successful. We use a combination of ‘matching by patterns’ results obtained by Arratia and Waterman [1], and the Chen–Stein method to show that the Poisson approximation can be extended. Our method explains how the matching is achieved. This provides an explanation for the formulas in Arratia and Waterman [1] and thus answers one of the questions posed in comment F19 in Aldous [2]. Furthermore, in the case where the alphabet consists of only two letters, the phase transition observed by Arratia and Waterman [1] for the strong law of large numbers extends to the distributional result. We conjecture that this phase transition on the distributional level holds for any finite alphabet.
This contribution focuses on a dialogue model using an intelligent working memory that aims at facilitating a robust human-machine dialogue in written natural language. The model has been designed as the core of an information seeking dialogue application. The particularity of this project is to rely on the potent interpretation and behaviour capabilities of pragmatic knowledge. Within this framework, the designed dialogue model appears as a kind of ‘forum’ for various facets, impersonated by different models extracted from both intentional and structural approaches of conversation. The approach is based on assuming that multiple expertise is the key to flexibility and robustness. Also, an intelligent memory that keeps track of all events and links them together from as many angles as necessary is crucial for multiple expertise management. This idea is developed by presenting an intelligent dialogue history which is able to complement the wide coverage of the co-operating models. It is no longer a simple chronological record, but a communication area, common to all processes. We illustrate our topic through examples brought out from collected corpora.
Let G be a graph with maximum degree Δ(G). In this paper we prove that if the girth g(G) of G is greater than 4 then its chromatic number, χ(G), satisfies
where o(l) goes to zero as Δ(G) goes to infinity. (Our logarithms are base e.) More generally, we prove the same bound for the list-chromatic (or choice) number: