To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter first introduces the basic concept of the cloud computing and cloud networking. A general cloud network architecture is presented and follows by the specific cloud systems, i.e., cloud data center networking, mobile cloud networking, and edge computing. Then, the chapter presents a survey on the game theoretic and auction models developed and applied to solve issues in cloud networking. Such issues include bandwidth reservation and allocation, request allocation, wireless bandwidth allocation, resource management in edge computing, and bandwidth allocation in software defined networking for cloud computing. The chapter then presents a cooperative game model for mobile cloud resource management in which the full formulation, algorithms, and performance evaluation are included. Finally, the chapter investigates how to provide efficient insurance in cloud computing market.
We consider a two-node queue modeled as a two-dimensional random walk. In particular, we consider the case that one or both queues have finite buffers. We develop an approximation scheme based on the Markov reward approach to error bounds in order to bound performance measures of such random walks. The approximation scheme is developed in terms of a perturbed random walk in which the transitions along the boundaries are different from those in the original model and the invariant measure of the perturbed random walk is of product-form. We then apply this approximation scheme to a tandem queue and some variants of this model, for the case that both buffers are finite. The modified approximation scheme and the corresponding applications for a two-node queueing system in which only one of the buffers has finite capacity have also been discussed.
People with severe neuromuscular trunk impairment cannot maintain or control upright posture of the upper body in sitting while reaching. Passive orthoses are clinically available to provide support and promote the use of upper extremities in this population. However, these orthoses only position the torso passively without any degree of trunk movement.
We introduce for the first time a novel active-assistive torso brace called Wheelchair Robot for Active Postural Support (WRAPS). It consists of two rings over the hips and chest connected by a 2RPS-2UPS parallel robotic device. WRAPS can modulate the displacement of the upper ring and/or the forces applied on the torso through the ring in four degrees-of-freedom (DOF), including rotations and translation in the sagittal and frontal planes.
In the present study, we evaluate the design of WRAPS and its functions. Moreover, we discuss the potential effectiveness of WRAPS as a therapeutic robotic tool in people with severe trunk control deficits. The performance of WRAPS was evaluated in seated healthy subjects. Kinematics and surface electromyography (sEMG) were collected when the participants performed selective trunk movements. First, the torso range of motion (tROM) was calculated with WRAPS in transparent mode—zero-force control mode—which was compared with free-guided tROM (no WRAPS) with motion capture system. Second, a position control mode was configured to mobilize the torso along the trajectories obtained with the transparent mode.
Our results show that the design of WRAPS suited well the subject’s anthropometrics while supporting the weight of the torso. Importantly, WRAPS can be programmed to replicate the subject’s tROM, without the full activation of torso muscles. This can be critical in individuals with no trunk control. Altogether, these preliminary results indicate the potential applicability of WRAPS to promote active-assistive trunk mobility in people who cannot sit independently because of trunk dysfunction.
Repetitive motion planning and control (RMPC) is a significant issue in the research of redundant robot manipulators. Moreover, noise from rounding error, truncation error, and robot uncertainty is an important factor that greatly affects RMPC schemes. In this study, the RMPC of redundant robot manipulators in a noisy environment is investigated. By incorporating the proportional and integral information of the desired path, a new RMPC scheme with pseudoinverse-type (P-type) formulation is proposed. Such a P-type RMPC scheme possesses the suppression of constant and bounded time-varying noises. Comparative simulation results based on a five-link robot manipulator and a PUMA560 robot manipulator are presented to further validate the effectiveness and superiority of the proposed P-type RMPC scheme over the previous one.
This paper studies the problem of optimizing the kinematic structure of an eight degree-of-freedom upper-limb rehabilitation exoskeleton. The objective of optimization is achieving minimum volume and maximum dexterity in the workspace of daily activities specified by a set of upper-arm configurations. To formulate the problem, a new index is proposed for effective characterization of kinematic dexterity for wearable robots. Additionally, a set of constraints are defined to ensure that the optimal design can cover the desired workspace of the exoskeleton, while singular configurations and physical interferences are avoided. The formulated multi-objective optimization problem is solved using an evolutionary algorithm (Non-dominated Sorting Genetic Algorithm II) and the weighted sum approach. Among the resulted optimal points, the point with least sensitivity with respect to the variations of design variables is chosen as the final design.
A family of sets is intersecting if no two of its members are disjoint, and has the Erdős–Ko–Rado property (or is EKR) if each of its largest intersecting subfamilies has non-empty intersection.
Denote by ${{\cal H}_k}(n,p)$ the random family in which each k-subset of {1, …, n} is present with probability p, independent of other choices. A question first studied by Balogh, Bohman and Mubayi asks:
\begin{equation} {\rm{For what }}p = p(n,k){\rm{is}}{{\cal H}_k}(n,p){\rm{likely to be EKR}}? \end{equation}
Here, for fixed c < 1/4, and $k \lt \sqrt {cn\log n} $ we give a precise answer to this question, characterizing those sequences p = p(n, k) for which
A hybrid-trajectory based terminal sliding mode controller (TSMC) is addressed for a free-flying two-flexible-link space manipulator with an elastic base. In this system, there are unknown but bounded external disturbances and parameters. First, the Lagrange dynamic model of the manipulator was established by the momentum conservation. Second, a TSMC based on desired trajectory was proposed, by which the terminal trajectories were asymptotically tracked and periodic flexible vibrations were excited. Then based on virtual control force, hybrid trajectories were generated, in which the flexible variables, the joint angular displacement errors and the base’s attitude error were considered. Finally, a hybrid-trajectory TSMC was presented, by which the terminal trajectories were asymptotically tracked and the flexible vibrations were suppressed.
Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
Rampant abuse, hate speech, censorship, bias, and disinformation - our Internet has problems. It is governed by technology companies - search engines, social media platforms, and infrastructure providers - whose hidden rules influence what we are allowed to see and say. In Lawless, Nicolas P. Suzor presents gripping examples of exactly how tech companies govern our digital environment and how they bend to pressure from governments and other powerful actors to censor and control the flow of information online. We are at a constitutional moment - an opportunity to rethink the basic rules of how the Internet is governed. Suzor offers a vision of a vibrant, diverse, and flourishing internet that can protect our fundamental rights from the lawless rule of tech. The culmination of more than ten years of original research, this groundbreaking work should be read by anyone who cares about the internet and the future of our shared social spaces.
This paper presents the results of a study exploring the intercultural development of first-year Japanese university students engaged in online intercultural exchange (OIE) using two variations: one implementing guided reflection, and the other relying on the learner autonomy model. Intercultural development was quantitatively measured using the Intercultural Sensitivity Scale (Chen & Starosta, 2000) and qualitatively investigated through participants’ written reflections. Results of the OIE using guided reflection showed significant gains in respect for the target culture, whereas the OIE that followed the autonomous learning model yielded significant gains in self-efficacy in relation to intercultural contact. Qualitative analysis of student reflections confirmed these findings and provided insight into the processes involved in achieving these results.
This exploratory study focuses on international students’ usage of digital tools in order to understand what role such tools play in the transition to their new academic environments and what learning opportunities they provide. Not only do digital tools accompany international students’ social, cultural, and linguistic transitions as they move to France to further their language competence, but their usage also reveals part of the social and semiotic adjustments they have to make in the process. Sixteen international students who volunteered for the study were given a smartphone application with which they could track learning opportunities by taking pictures and writing textual commentaries. The data, collected over a period of five weeks, thus include the resulting entries these participants shared in their mobile multimodal diaries with the researchers, as well as an end-of-project debriefing that was conducted to shed further light on the international students’ digital habits and their attitudes towards self-tracking. This study indicates that digital tools can play an important and pervasive role in facilitating international students’ linguistic development and their dealings with everyday life abroad. It also confirms that self-tracking apps can be instrumental in enhancing students’ awareness of learning opportunities outside the classroom.
Data-driven learning (DDL; Johns, 1991), involving students’ hands-on use of corpora for self-guided language learning, is a methodology now increasingly used in many tertiary contexts to enhance the teaching of disciplinary postgraduate thesis writing. However, there are still few studies tracking students’ actual engagement with corpora for DDL. This mixed-methods study reports on the tracking of students’ corpus use via a purpose-built corpus query and data visualisation platform integrated into a large postgraduate disciplinary thesis writing program at a university in Hong Kong. Data on corpus usage history (e.g. times of access, duration of use), query syntax (e.g. query lexis/phraseology and use of wildcards and part-of-speech tags), query function (e.g. frequency lists/distribution, concordance sorting and collocation) and query filters (e.g. searches by faculty, discipline, or thesis section) were collected from 327 students spanning over 11,000 individual corpus queries. The results show significant interdisciplinary and inter-/intra-user trends and variation in the use of particular corpus functions and query syntax adopted by corpus users. Students varied in the type of knowledge (e.g. domain-specific, language-specific) they were accessing, and frequently went beyond the exemplars of the DDL course materials to generate unique queries under their own initiative. Qualitative case study data from three corpus users’ activity logs also show distinctive individual corpus engagement by query frequency and function. These data provide a clearer insight into what students actually do during DDL and the different directions and trajectories that individual users take as a result of DDL. All accompanying DDL tasks are also included as supplementary materials.
This qualitative study investigates a media transfer project in which a digital game was used to promote student creativity in an English as a foreign language (EFL) class. The paper first addresses the potential of opportunities for stimulating student creativity and motivation. Creativity has been highlighted as a core competency and has garnered considerable interest in many fields in recent years; however, creativity and creative writing are rarely cultivated in EFL writing classrooms. This study uses a digital game and designs a creative writing project to provide an authentic learning opportunity through which students were able to develop their creativity, use the target language in a meaningful way, and enjoy learning. A murder mystery game, Her Story, was selected because it provides a springboard for creative writing due to its fragmented and ambiguous narrative. Based on the game plot, 25 Korean university students reimagined the narrative in creative writing projects of their own. The study analyzes the students’ writing according to three constructs in Torrance’s model of creativity: originality, flexibility, and elaboration. The results demonstrate how the students’ writing exhibits considerable creativity in all three constructs. Student reflection papers and surveys indicate that participating in the project enhanced the students’ motivation for and engagement in learning.
This paper presents a logic framework for modeling the interaction among deductive databases in a peer-to-peer (P2P) environment. Each peer joining a P2P system provides or imports data from its neighbors by using a set of mapping rules, that is, a set of semantic correspondences to a set of peers belonging to the same environment. By using mapping rules, as soon as it enters the system, a peer can participate and access all data available in its neighborhood, and through its neighborhood it becomes accessible to all the other peers in the system. A query can be posed to any peer in the system and the answer is computed by using locally stored data and all the information that can be consistently imported from the neighborhood. Two different types of mapping rules are defined: mapping rules allowing to import a maximal set of atoms not leading to inconsistency (called maximal mapping rules) and mapping rules allowing to import a minimal set of atoms needed to restore consistency (called minimal mapping rules). Implicitly, the use of maximal mapping rules states it is preferable to import as long as no inconsistencies arise; whereas the use of minimal mapping rules states that it is preferable not to import unless a inconsistency exists. The paper presents three different declarative semantics of a P2P system: (i) the Max Weak Model Semantics, in which mapping rules are used to import as much knowledge as possible from a peer’s neighborhood without violating local integrity constraints; (ii) the Min Weak Model Semantics, in which the P2P system can be locally inconsistent and the information provided by the neighbors is used to restore consistency, that is, to only integrate the missing portion of a correct, but incomplete database; (iii) the Max-Min Weak Model Semantics that unifies the previous two different perspectives captured by the Max Weak Model Semantics and Min Weak Model Semantics. This last semantics allows to characterize each peer in the neighborhood as a resource used either to enrich (integrate) or to fix (repair) the knowledge, so as to define a kind of integrate–repair strategy for each peer. For each semantics, the paper also introduces an equivalent and alternative characterization, obtained by rewriting each mapping rule into prioritized rules so as to model a P2P system as a prioritized logic program. Finally, results about the computational complexity of P2P logic queries are investigated by considering brave and cautious reasoning.
Agile bionic leg mechanism (ABLM) has attracted more and more attention in the development of jumping robots and high-speed running robots. However, theoretical study of the global structure for motility characteristics and its evolution is few. By using the modern mathematical tools such as singular theory, geometric topology, and group theory, a global scale analysis method for kinematic performance of mechanisms is proposed. Taking 6-bar with two rings mechanism as an example, a detailed analysis process is studied. The 6-bar ABLM designed by this theory is verified by virtual prototype simulation experiment. The global scale analysis of 4-bar linkage is also carried out by using this method, and the result is compared with the “Grashof criterion” to verify the correctness of this method. It provides a general theory and method for innovative design and global scale analysis of ABLM.
In the current investigation, a novel navigational controller has been designed and implemented for humanoids in cluttered environments. Here, regression analysis is hybridized with genetic algorithm (GA) for designing the controller. The obstacle distances collected in the form of sensor outputs are initially fed to the regression controller; and based on the previous training pattern data, an intermediate advancing angle (AA) is obtained as the first output. The intermediate AA obtained from the regression controller along with other inputs is again fed to the GA controller, which generates the final AA as the desired final output to avoid the obstacles present in a complex environment and reach the destination successfully. The working of the controller is tested on a V-REP simulation platform. In the current work, navigation of both single as well as multiple humanoids has been attempted. To avoid inter-collision among multiple humanoids during their navigation in a common platform, a Petri-Net model has been proposed. The simulation results are validated through a real-time experimental platform developed under laboratory conditions. The results obtained from both the simulation and experimental platforms are compared against each other and are found to be in good agreement with acceptable percentage of errors. Finally, the proposed controller is also compared with other existing navigational controller and an improvement in performance has been observed.
Industrial applications that involve working on and moving a heavy load or that constrain the operator to work in uncomfortable positions can take advantage of the assistance of a robotic assistant. In this paper, we propose an architecture for an ergonomic human–robot co-manipulation of objects of various shapes and weight. The object is carried by the robot and, thanks to an ergonomic planner, is positioned in the most comfortable way for the user. Furthermore, thanks to an admittance control with payload compensation, the user can easily adjust the position of the object for working on different parts of it. The proposed architecture is experimentally validated in a robotic cell including an ABB industrial robot.
In this paper, we propose a method of using an autonomous flying robot to explore an underground tunnel environment and build a 3D map. The robot model we use is an extension of a 2D non-holonomic robot. The measurements and sensors we considered in the presented method are simple and valid in practical unmanned aerial vehicle (UAV) engineering. The proposed safe exploration algorithm belongs to a class of probabilistic area search, and with a mathematical proof, the performance of the algorithm is analysed. Based on the algorithm, we also propose a sliding control law to apply the algorithm to a real quadcopter in experiments. In the presented experiment, we use a DJI Guidance sensing system and an Intel depth camera to complete the localization, obstacle detection and 3D environment information capture. Furthermore, the simulations show that the algorithm can be implemented in sloping tunnels and with multiple UAVs.
We present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing (2010) and Odintsov & Wansing (2017), as well as the modal logic KN4 with strong implication introduced in Goble (2006). In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square- } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. For KN4 we provide both an FDE-style axiom system and a decidable sequent calculus for which a contraction elimination and a cut elimination result are shown.