To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper studies the allocation of active redundancies to coherent systems on the context that the base and redundancy components have mutual independent lifetimes. For systems with two symmetric components and systems with one component's minimal cut sets (minimal path sets) covering those of another, we derive sufficient conditions to compare the resultant system lifetimes. Some numerical examples are also presented to illustrate the theoretical results.
The goal of this paper is to present a new hybrid system based on the fusion of gaze data and Steady State Visual Evoked Potentials (SSVEP) not only to command a powered wheelchair, but also to account for users distraction levels (concentrated or distracted). For this purpose, a multi-layer perception neural network was set up in order to combine relevant gazing and blinking features from gaze sequence and brainwave features from occipital and parietal brain regions. The motivation behind this work is the shortages raised from the individual use of gaze-based and SSVEP-based wheelchair command techniques. The proposed framework is based on three main modules: a gaze module to select command and activate the flashing stimuli. An SSVEP module to validate the selected command. In parallel, a distraction level module estimates the intention of the user by mean of behavioral entropy and validates/inhibits the command accordingly. An experimental protocol was set up and the prototype was tested on five paraplegic subjects and compared with standard SSVEP and gaze-based systems. The results showed that the new framework performed better than conventional gaze-based and SSVEP-based systems. Navigation performance was assessed based on navigation time and obstacles collisions.
This book explores the fundamentals of computer music and functional programming through the Haskell programming language. Functional programming is typically considered difficult to learn. This introduction in the context of creating music will allow students and professionals with a musical inclination to leverage their experience to help understand concepts that might be intimidating in more traditional computer science settings. Conversely, the book opens the door for programmers to interact with music by using a medium that is familiar to them. Readers will learn how to use the Euterpea library for Haskell (http://www.euterpea.com) to represent and create their own music with code, without the need for other music software. The book explores common paradigms used in algorithmic music composition, such as stochastic generation, musical grammars, self-similarity, and real-time interactive systems. Other topics covered include the basics of signal-based systems in Haskell, sound synthesis, and virtual instrument design.
A cloud provider hosts virtual machines (VMs) of different types, with different resource requirements. There are bounds on the total amounts of each kind of resource that are available. Requests arrive in batches of different sizes. Under the ‘complete blocking’ policy, a request is accepted only if all the VMs in its batch can be accommodated. The ‘partial blocking’ policy would accept a request if there is room for at least one of the VMs in the batch. Blocked requests are lost, with an associated loss of revenue. The trade-offs between costs and benefits are evaluated by means of appropriate models, for which novel solutions based on fixed-point iterations are proposed. The applicability of those solutions is extended, by means of simplifications, to very large-scale systems. Numerical examples and comparisons with simulations are presented.
A new stopping problem and the critical exercise price of American fractional lookback option are developed in the case where the stock price follows a special mixed jump diffusion fractional Brownian motion. By using Itô formula and Wick-Itô-Skorohod integral a new market pricing model is built, and the fundamental solutions of stochastic parabolic partial differential equations are deduced under the condition of Merton assumptions. With an optimal stopping problem and the exercise boundary, the explicit integral representation of early exercise premium and the critical exercise price are also derived. Numerical simulation illustrates the asymptotic behavior of this critical boundary.
I develop a semantics for imperatives within the truthmaker framework by taking the meaning of an imperative to be given by the actions that are in compliance with or in contravention to the imperative.
Today, people want to consult dictionaries of good quality, but they expect them to be available online for free. For this reason, publishers need advertisements to cover the costs of producing and maintaining online dictionary content. This paper aims to investigate the role of advertisements in language reception, production, and learning following online dictionary consultation. It also undertakes to determine whether advertisements in an online dictionary affect the time needed for dictionary-based decoding and encoding. In the experiment, participants consulted one of the most prestigious dictionaries of English for foreign learners, OALD9 (Oxford Advanced Learner’s Dictionary, 9th edition). Two versions of the dictionary were employed in the study: one that includes advertisements and is available online free of charge, and its advertisement-free counterpart, OALD9 Premium. In the receptive task, the participants were requested to explain the meaning of new English words. In the productive one, they had to use the words in sentences. Meaning retention was checked in the immediate post-test. The research reveals that advertisements in OALD9 impede language reception, production, and learning, and also extend the time for comprehending new words. Suggestions for further research into advertisements on dictionary websites are presented in the final part of the paper.
Singularity analysis of parallel manipulators is an active research field in robotics. The present article derives for the first time in the literature a condition under which a five-bar parallel robot encounters high-order parallel singularities. In this regard, by focusing on the planar 5R mechanism, a theorem is given in terms of the slope of its coupler curve at the parallel singular configurations. At high-order parallel singularities, the associated determinant vanishes simultaneously with at least its first-order time derivative. The determination of such singularities is quite important since in their presence, some special conditions should be satisfied for bounded inverse dynamic solutions.
During extraterrestrial planetary exploration programs, autonomous robots are deployed using a separate immovable lander and a rover. This mode has some limitations. In this paper, a concept of a novel legged robot with one passive limb and singularity property is introduced that has inbuilt features of a lander and a rover. Currently, studies have focused primarily on a performance analysis of the lander without a walking function. However, a systematic type synthesis of the legged mobile lander has not been studied. In this study, a new approach to the type synthesis used for the robot is proposed based on the Lie group theory. The overall concept and design procedures are proposed and described. The motion requirements of the robot and its legs, which are corresponding to the multi-function, are extracted and described. The layouts of the subgroups or submanifolds of the limbs are determined. The structures of the passive and actuated limbs are synthesized. Numerous structures of the legs with a passive limb are produced and listed corresponding to the desired displacement manifolds. Numerous novel structures of legs for the legged mobile lander are presented and listed. Then, four qualitative criteria or indexes are introduced. Based on the proposed criteria, a leg's configuration is selected as the best. A typical structure of the legged mobile lander is obtained by assembling the structures of the proposed legs. Finally, the typical robot is used as an example to verify the capabilities of the novel robot using a software simulation (ADAMS).
Minimally invasive surgery is a developing direction of modern medicine. With the successful development of controllable capsule endoscopies, capsule robots are very popular in the field of gastrointestinal medicine. At present, the study of intestinal robots is aimed at the pipeline environment of a single-phase liquid flow. But there exist food residues (i.e. solid particles) or liquid foods in the actual intestine, so intestinal fluid should be liquid–solid or liquid–liquid two-phase mixed fluid. For inner spiral capsule robots with different internal diameters and outer spiral capsule robots, using computational fluid dynamics (CFD) method, the operational performance indicators (i.e. axial thrust force, circumferential resisting moment and maximum pressure to pipeline wall) of spiral capsule robots are numerically calculated in the liquid–solid or liquid–liquid two-phase mixed fluid. By the orthogonal experimental optimization method, the optimum design of spiral capsule robots is obtained in the liquid–solid mixed fluid. The experimental verification has been also carried out. The results show that in the liquid–solid two-phase fluid, the axial thrust force and circumferential resisting moment of the spiral capsule robots decrease with the increase of the size or concentration of solid particles. In the same liquid–solid or liquid–liquid mixed fluid, the operational performance indicators of outer spiral robots are much higher than those of inner spiral robots, and the operational performance indicators of inner spiral robots with bigger internal diameters are higher than those with smaller internal diameters. Adding solid particles of high concentration in the pipeline containing liquid will reduce the drive performance of spiral capsule robots, but adding another liquid of high viscosity will improve the drive performance of spiral capsule robots.
In this paper, we present a new leader–follower type solution to the translational maneuvering problem for formations of multiple, non-holonomic wheeled mobile robots. The solution is based on the graph that models the coordination among the robots being a spanning tree. Our control law incorporates two types of position errors: individual tracking errors and coordination errors for leader–follower pairs in the spanning tree. The control ensures that the robots globally acquire a given planar formation while the formation as a whole globally tracks a desired trajectory, both with uniformly ultimately bounded errors. The control law is first designed at the kinematic level and then extended to the dynamic level. In the latter, we consider that parametric uncertainty exists in the equations of motion. These uncertainties are accounted for by employing an adaptive control scheme. The main contributions of this work are that the proposed control scheme minimizes the number of control links and global position measurements, and accounts for the uncertain vehicle dynamics. The proposed formation maneuvering controls are demonstrated experimentally and numerically.
This paper studies the friendship paradox for weighted and directed networks, from a probabilistic perspective. We consolidate and extend recent results of Cao and Ross and Kramer, Cutler and Radcliffe, to weighted networks. Friendship paradox results for directed networks are given; connections to detailed balance are considered.
Reinforcement learning (RL) can be extremely effective in solving complex, real-world problems. However, injecting human knowledge into an RL agent may require extensive effort and expertise on the human designer’s part. To date, human factors are generally not considered in the development and evaluation of possible RL approaches. In this article, we set out to investigate how different methods for injecting human knowledge are applied, in practice, by human designers of varying levels of knowledge and skill. We perform the first empirical evaluation of several methods, including a newly proposed method named State Action Similarity Solutions (SASS) which is based on the notion of similarities in the agent’s state–action space. Through this human study, consisting of 51 human participants, we shed new light on the human factors that play a key role in RL. We find that the classical reward shaping technique seems to be the most natural method for most designers, both expert and non-expert, to speed up RL. However, we further find that our proposed method SASS can be effectively and efficiently combined with reward shaping, and provides a beneficial alternative to using only a single-speedup method with minimal human designer effort overhead.
The use of videoconferencing technology to support the delivery of language programs shows great potential in regional and rural settings where a lack of access to specialist teachers limits equitable access to education. In this article, we investigate the establishment of two regional and rural primary school networks in Australia for videoconferenced language learning. Adopting a perspective taken from the discipline of information systems called structuration theory, we examine how the technology they use both changes and is changed by its use in language learning, and how schools and teachers take control of technology and adapt their educational approaches. Case studies were carried out on the two networks using multiple data sources, including interviews and observation of language classes. The findings reveal that even with the same conceptual foundations and aims, divergent models of practice emerge as sustainable adaptations to localised factors. These differences are shaped by, among other things, an interplay between the quality of infrastructure, prior knowledge, and the “material properties” of the technology, including its functions, limits, and deployment in physical space. A closer look at these practices illustrates limitations and possibilities specifically for language education, but also more broadly illustrates how the success of these videoconferencing initiatives are influenced by a nuanced combination of social, educational, and technological factors.
Geometric and topological inference deals with the retrieval of information about a geometric object using only a finite set of possibly noisy sample points. It has connections to manifold learning and provides the mathematical and algorithmic foundations of the rapidly evolving field of topological data analysis. Building on a rigorous treatment of simplicial complexes and distance functions, this self-contained book covers key aspects of the field, from data representation and combinatorial questions to manifold reconstruction and persistent homology. It can serve as a textbook for graduate students or researchers in mathematics, computer science and engineering interested in a geometric approach to data science.