To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study experimentally investigates wake recovery mechanisms behind a floating wind turbine subjected to imposed fore-aft (surge) and side-to-side (sway) motions. Wind tunnel experiments with varying free-stream turbulence intensities ($\textit{TI}_{\infty } \in [1.1, 5.8]\,\%$) are presented. Rotor motion induces large-scale coherent structures – pulsating for surge and meandering for sway – whose development critically depends on the energy ratio between the incoming turbulence and the platform motion. The results provide direct evidence supporting the role of these structures in enhancing wake recovery, as previously speculated by Messmer, Peinke & Hölling (J. Fluid Mech., vol. 984, 2024, A66). These periodic structures significantly increase Reynolds shear stress gradients, particularly in the streamwise–lateral direction, which are key drivers of wake recovery. However, their influence diminishes with increasing $\textit{TI}_{\infty }$: higher background turbulence weakens the coherent flow patterns, reducing their contribution to recovery. Beyond a threshold turbulence level – determined by the energy, frequency and direction of motion – rotor-induced structures no longer contribute meaningfully to recovery, which becomes primarily driven by the free-stream turbulence. Finally, we show that the meandering structures generated by sway motion are more resilient in turbulent backgrounds than the pulsating modes from surge, making sway more effective for promoting enhanced wake recovery.
The rapid advancement of satellite-based monitoring technologies and niche modelling present unprecedented opportunities to enhance conservation efforts, especially over large areas, yet their practical application in guiding conservation strategies remains limited. This study examines how land-use changes affect ant diversity in the Acre River basin, south-western Brazilian Amazon. Using niche modelling with climatic, environmental and land-use data, we examined species distributions for three ant guilds – forest specialists, generalists and open-habitat specialists – across 1985, 2019 and 2050. The results show that forest specialists are concentrated in the eastern regions but are projected to decline, while open-habitat specialists – dominant in the south-west – are expected to increase in distribution. Generalists displayed broader, stable distributions. These patterns highlight the critical role of forest conservation in preserving the diversity of forest-specialist species and the threat posed by Amazon forest conversion, and they point to the need for strategic landscape planning to mitigate deforestation impacts.
Ichnological studies in deep-marine successions are of great use for detailing the evolution of these sedimentary environments, as well as highlighting the changes in ambient conditions. In order to investigate these aspects, the deep-marine Maghrebian Flysch Basin of Northern Morocco was chosen for study. Within this basin, two sedimentary successions – the Beni Ider and Tala Lakrah units, comprising calcareous and siliciclastic turbidite sediments and ranging in age from Late Cretaceous to Early Miocene, were examined in detail. An ichnoassemblage (31 ichnogenera, 41 ichnospecies), including 9 graphoglyptid ichnogenera, was recognised, with the ichnoassemblages belonging to the Nereites ichnofacies. Pre- and post-depositional ichnofossils were present in equal amounts, with ichnodiversity being higher in Eocene times.
Comparison and correlation of the ichnological data from Morocco (this study) with data from Spain indicated that the main influences on trace fossil distribution within the successions were broadly similar. Environmental factors, such as substrate, oxygen and nutrient contents, as well as the ambient hydrodynamic regime and the frequency and intensity of turbiditic events, all played an important role. However, the relative importance of these factors varied both spatially as well as temporally within the different parts of the Maghrebian Flysch Basin. Temporal variations were related both to changes in (orogenically-influenced) basin and lobe evolution, as well as changes in global oceanographic and climatic conditions at the Eocene–Oligocene transition.
The crystallisation that occurs when a drop is in contact with a cold surface is a particularly challenging phenomenon to capture experimentally and describe theoretically. The situation of a liquid–liquid interface, where crystals appear on a mobile interface is scarcely studied although it provides a defect-free interface. In this paper, we quantify the dynamics of crystals appearing upon the impact of a drop on a cool liquid bath. We rationalise our observations with a model considering that crystals appear at a constant rate depending on the thermal shock on the expanding interface. This model provides dimensionless curves on the number and the surface area of crystals that we compare with our experimental measurements.
Vertically bounded, horizontally propagating internal waves may become unstable through triad resonant instability, in which two sibling waves in background noise draw energy from a parent internal tide. If the background stratification is uniform, then the condition for pure resonance between the parent and sibling wave frequencies and horizontal and vertical wavenumbers can be found semi-analytically from the roots of a polynomial expression. In non-uniform stratification, determining the frequencies and horizontal wavenumbers for which resonance occurs is less straightforward. We develop a theory for near-resonant excitation of a pair of sibling waves from a low-mode internal wave in which the proximity to pure resonance is characterised by the discrepancy between the forced sibling wave frequencies and the natural frequency of these modes. Knowing this discrepancy can be used methodically to determine pure resonance conditions. This inviscid theory is compared with numerical simulations of effectively inviscid waves. For comparison with laboratory experiments, the theory is adapted to include viscous effects both in the bulk of the fluid and at the side walls of the tank. We find that our theoretical predictions for frequencies and wavenumbers of the fastest growing sibling waves are generally consistent between theory, simulations and experiments, though theory overpredicts the growth rate observed in experiments. In all cases, the growth rate of sibling waves decreases with decreasing parent wave frequency, becoming negligibly small in experiments if the parent wave has frequency less than $\approx 0.7$ of the buoyancy frequency at the surface.
Ostracods from the late Mississippian–early Pennsylvanian (late Serpukhovian–Bashkirian) from the Calingasta–Uspallata Basin, Precordillera Argentina, are studied for the first time. The analyzed successions (Hoyada Verde, El Paso, Leoncito, and Yalguaraz formations) document the most widespread glacial event in southwestern Gondwana during the Late Paleozoic Ice Age. One new species, Aechmina cuyanensis new species, is defined, and seven species are described, two of which are new records for South America. The distribution of Carboniferous ostracods in the Argentine basins (Calingasta–Uspallata, Río Blanco, and Tepuel–Genoa) is discussed, highlighting the interesting record of this fauna in levels between or below diamictites and its absence in the mudstone interval with no evidence of glaciation. The association is characterized by ornamented palaeocopids, one binodicopid, and some metacopid species corresponding to the Assemblage III of the Eifelian Mega-Assemblage, indicating a slightly hypoxic and very calm environment between the fair-weather wave base and the storm wave base.
We simulate the formation of a condensate on a sphere, generated by an inverse energy cascade originating from a stochastic forcing at spherical harmonic wavenumber $ l_{\!f} \gg 1$. The condensate forms as two pairs of oppositely signed vortices lying on a great circle that is randomly rotating in three dimensions. The vortices are separated by $ 90^\circ$ and like signed vortices are located at opposite poles. We show that the configuration is the maximum energy solution to a Hamiltonian dynamical system with a single degree of freedom. An analysis in wavenumber space reveals that interactions between widely separated scales of motions dominate the formation process. For comparison, we also perform freely decaying simulations with random initial conditions and prescribed spectra. The late time solutions consist of four coherent vortices, similar to the solutions of the forced simulations. However, in the freely decaying simulations the vortex configuration is not stationary but exhibits periodic motions.
Flow-induced compaction of soft, elastically deformable porous media occurs in numerous industrial processes. A theoretical study of this problem, and its interplay with gravitational and mechanical compaction, is presented here in a one-dimensional configuration. First, it is shown that soft media can be categorised into two ‘types’, based on their compaction behaviour in the limit of large applied fluid pressure drop. This behaviour is controlled by the constitutive laws for effective pressure and permeability, which encode the rheology of the solid matrix, and can be linked to the well-known poroelastic diffusivity. Next, the interaction of gravitational and flow-induced compaction is explored, with the resultant asymmetry between upward and downward flow leading to distinct compaction behaviour. In particular, flow against gravity – upwards – must first relieve gravitational stresses before any bulk compaction of the medium can occur, so upward flow may result in compaction of some regions and decompaction of others, such that the overall depth remains fixed. Finally, the impact of a fixed mechanical load on the sample is considered: again, it is shown that flow must ‘undo’ this external load before any bulk compaction of the whole medium can occur in either flow direction. The interplay of these different compaction mechanisms is explored, and qualitative differences in these behaviours based on the ‘type’ of the medium are identified.
The results of a ground-penetrating radar survey and multiproxy studies of the sediment cores collected from two lakes in the Valdai Highlands (East European Plain) provide new insights into the late glacial and Holocene environmental history of the region situated in the marginal zone of the last Scandinavian ice sheet. The cores were analyzed for organic carbon and nitrogen content, as well as for pollen and diatoms. The chronology of the cores is based on radiocarbon dates and pollen-based stratigraphy. The studied records document that vast dead ice masses and associated ice-dammed lakes existed in the Valdai Highlands area until ∼14 cal ka BP. Open tundra-steppe communities dominated the study area during the Oldest Dryas, Bølling, and Older Dryas (between ca. 17 and 14 cal ka BP), but dwarf birch (Betula nana), shrub alder (Alnus fruticosa), and willow (Salix) were also common. Scots pine forest (Pinus sylvestris) became common for a short interval during the Bølling warming (ca. 14.9 and 14.4 cal ka BP). The appearance of spruce (Picea) forest in the landscape occurred in the beginning of the Allerød warming (∼14 cal ka BP), but the open steppe-like plant communities remained common until the onset of the Holocene. The modern lake systems emerged at ∼10 cal ka BP, marked by an onset of organic-type sedimentation and the appearance of modern-type forests. The Mid-Holocene (∼8–4 cal ka BP) was the warmest time, as documented by the maximal distribution of temperate and broadleaved taxa in the region. The onset of agricultural land use and simultaneous trend of increasing lake trophic state and increasing paludification in the area is recorded at ∼2.5 cal ka BP.
The non-uniform evaporation rate at the liquid–gas interface of binary droplets induces solutal Marangoni flows. In glycerol–water mixtures (positive Marangoni number, where the more volatile fluid has higher surface tension), these flows stabilise into steady patterns. Conversely, in water–ethanol mixtures (negative Marangoni number, where the less volatile fluid has higher surface tension), Marangoni instabilities emerge, producing seemingly chaotic flows. This behaviour arises from the opposing signs of the Marangoni number. Perturbations locally reducing surface tension at the interface drive Marangoni flows away from the perturbed region. Continuity of the fluid enforces a return flow, drawing fluid from the bulk towards the interface. In mixtures with a negative Marangoni number, preferential evaporation of the lower-surface-tension component leads to a higher concentration of the higher-surface-tension component at the interface as compared with the bulk. The return flow therefore creates a positive feedback loop, further reducing surface tension in the perturbed region and enhancing the instability. This study investigates bistable quasi-stationary solutions in evaporating binary droplets with negative Marangoni numbers (e.g. water–ethanol) and examines symmetry breaking across a range of Marangoni numbers and contact angles. Bistable domains exhibit hysteresis. Remarkably, flat droplets (small contact angles) show instabilities at much lower critical Marangoni numbers than droplets with larger contact angles. Our numerical simulations reveal that interactions between droplet height profiles and non-uniform evaporation rates trigger azimuthal Marangoni instabilities in flat droplets. This geometrically confined instability can even destabilise mixtures with positive Marangoni numbers, particularly for concave liquid–gas interfaces, as in wells. Finally, through a Lyapunov exponent analysis, we confirm the chaotic nature of flows in droplets with a negative Marangoni number. We emphasise that the numerical models are intentionally simplified to isolate and clarify the underlying mechanisms, rather than to quantitatively predict specific experimental outcomes; in particular, the model becomes increasingly limited in regimes of rapid evaporation.
The search for biosignatures of past microbial life has promoted the interest in halophilic archaea trapped inside fluid inclusions of salt crystals. These hypersaline environments are promising targets for the preservation of microbial cell envelope biomolecules. In this study, we focused on the preservation of bacterioruberin, a carotenoid pigment found in the cell envelope of Halobacterium salinarum, within fluid inclusions of salt crystals mimicking early Mars environments and modern Earth. Halite (NaCl) and sylvite (KCl) crystals were subjected to Mars-like proton irradiation, and the preservation of carotenoids was assessed using in situ and ex situ Raman spectroscopy. Our findings demonstrate that Raman spectroscopy efficiently detected carotenoids within fluid inclusions in non-irradiated crystals. However, post-irradiation analyses posed great challenges due to fluorescence induced by the formation of colour centres in the crystal lattice, which suppressed the carotenoid signal. Cleavage of irradiated crystals revealed preserved carotenoid pigments beyond the radiation penetration depth, suggesting potential preservation of biomolecules in deeper inclusions within larger crystals. Furthermore, in some cases, carotenoids were detected even within fluorescent zones, suggesting extensive preservation. This study underscores the potential of Raman spectroscopy for the detection of carotenoids as biosignatures in planetary exploration contexts, particularly as a preliminary screening tool. However, it also highlights the need for optimized protocols to overcome fluorescence-related limitations. These findings contribute to the methodologies for detecting and interpreting biosignatures in salt deposits, advancing the search for possible traces of past microbial life beyond Earth.
The study of the ground surface temperature (GST) regimes from 2007 to 2021 at different stations on Livingston and Deception islands, South Shetland Islands, in the north-western sector of the Antarctic Peninsula (AP), shows that soils undergo similar cooling in early winter before a shallow snow mantle covers the sites. All monitoring sites along the study period go through seasonal phases of cooling, attenuation, insulation, fusion and zero curtain during winter, although thermal equilibrium is only reached at some stations located at lower elevations on Livingston Island. GST evolution at these stations and the duration of snow periods show oscillations, with turning points in the years 2014 and 2015, when temperatures were at their minimum and snow durations were at their maximum, in agreement with the cooling period occurring in the north-western AP in the early twenty-first century. The thermal regime is mainly controlled by snow cover and its onset and offset dates based only on descriptive patterns, not on statistical testing, more than by altitudinal, topographical, geological or geomorphological factors.
The present study documents the lithostratigraphy, biostratigraphy, facies evolution and depositional environments of the Eocene El Kohol Formation exposed on the southern flank of the Central Saharan Atlas (Algeria), through the integration of lithological characteristics, fossil and ichnofossil assemblages, and microfacies analysis. The succession is subdivided into two formal members: the Marly El Kohol Member, comprising a lower marlstone-dominated interval, and the Siliciclastic Kheneg ed Dis Member, representing an upper sandstone-dominated succession. The boundary between these members is marked by a transition from pale, carbonate-rich deposits to darker clastic sediments.
Field observations and microscopic analyses have enabled the recognition of sixteen facies types (Ft1–Ft16), which are interpreted in terms of depositional environment and grouped into four main facies associations (FA1–FA4): (FA1) an inland lake environment; (FA2) a palustrine environment, characterized by carbonate deposition in freshwater to brackish conditions with subaerial exposure and paedogenic modification; and alluvial settings comprising (FA3) fluvial channel and (FA4) floodplain deposits.
Palaeontological analyses have produced new micropalaeontological data for the region, including charophytes (Sphaerochara parvula, Nodosochara [Turbochara] sp., Gyrogona sp., Harrisichara cf. leptocera, Lamprothamnium papulosum, Peckichara torulosa var. varians, Raskyella cf. sahariana and Nitellopsis cf. [Tectochara] dutempleii), ostracods (Neocyprideis meguerchiensis, Paracypris? sp. 1, Paracypris? sp. 2 and Thalassocypria? sp. 1) and actinopterygian fish microremains (primarily from polypterids and alestids). Additionally, fragmentary remains of the terrestrial proboscidean Numidotherium koholense have been recovered. Ichnological analysis of the succession identified five ichnotaxa: Ophiomorpha isp., Palaeophycus isp., Skolithos annulatus, Skolithos linearis and Thalassinoides horizontalis.
This study contributes to refining the regional and North African understanding of the spatial extent and palaeoenvironmental evolution of the Eocene succession and helps to complete the ichnological and palaeontological records of the Eocene in the area.
Biologically inspired aero/hydrodynamics attracts considerable interest because of promising efficiency and manoeuvring capabilities. Yet, the influence that external perturbations, typical of realistic environments, can have over the flow physics and aerodynamic performance remains a scarcely investigated issue. In this work, we focus on the impact of free stream turbulence (FST) on the aerodynamics of a flapping wing with a prescribed (heaving and pitching) motion at a chord-based Reynolds number of 1000. The problem is tackled by means of direct numerical simulations using an immersed boundary method and a synthetic turbulence generator. The effect of two key parameters, i.e. the turbulence intensity and integral length scale of FST, is described by characterising the phase- and spanwise-averaged flows and aerodynamic coefficients. In particular, we show how FST effectively enhances the dissipation of the vortices generated by the flapping wing once they are sufficiently downstream of the leading edge. The net (i.e. time-averaged) thrust is found to be marginally sensitive to the presence of FST, whereas the characteristic aerodynamic fluctuations appear to scale linearly with the turbulence intensity and sublinearly with the integral length scale. Moreover, we reveal a simple mechanism where FST triggers the leading-edge vortex breakup, which in turns provides the main source of aerodynamic disturbances experienced by the wing. Finally, we show how the frequency spectra of the aerodynamic fluctuations are governed by the characteristic time scales involved in the problem.
Interactions between shock waves and gas bubbles in a liquid can lead to bubble collapse and high-speed liquid jet formation, relevant to biomedical applications such as shock wave lithotripsy and targeted drug delivery. This study reveals a complex interplay between acceleration-induced instabilities that drive jet formation and radial accelerations causing overall bubble collapse under shock wave pressure. Using high-speed synchrotron X-ray phase contrast imaging, the dynamics of micrometre-sized air bubbles interacting with laser-induced underwater shock waves are visualised. These images offer full optical access to phase discontinuities along the X-ray path, including jet formation, its propagation inside the bubble, and penetration through the distal side. Jet formation from laser-induced shock waves is suggested to be an acceleration-driven process. A model predicting jet speed based on the perturbation growth rate of a single-mode Richtmyer–Meshkov instability shows good agreement with experimental data, despite uncertainties in the jet-driving mechanisms. The jet initially follows a linear growth phase, transitioning into a nonlinear regime as it evolves. To capture this transition, a heuristic model bridging the linear and nonlinear growth phases is introduced, also approximating jet shape as a single-mode instability, again matching experimental observations. Upon piercing the distal bubble surface, jets can entrain gas and form a toroidal secondary bubble. Linear scaling laws are identified for the pinch-off time and volume of the ejected bubble relative to the jet’s Weber number, characterising the balance of inertia and surface tension. At low speeds, jets destabilise due to capillary effects, resulting in ligament pinch-off.
We present the mineralogy and whole rock geochemistry of the lamproites dykes from the Kawardha area of the Western Bastar Craton. These dykes are characterized by phenocrysts and microphenocrysts of olivine, phlogopite, ulvo-spinel, Cr-spinel and magnetite within the chlorite and carbonate-rich groundmass with rutile and apatite as accessory phases. Mineral chemistry indicates that the lamproites in Kawardha are similar to olivine-phlogopite lamproites and are geochemically similar to other lamproites in the eastern Bastar craton. The Kawardha lamproites are characterized by higher concentrations of MgO (12–20.29 wt%), V (193–502 ppm), Ni (206–823 ppm), Cr (146–1130 ppm), Nb (101–260 ppm), Zr (301–635 ppm), Hf (6–13 ppm) and LREEs. Positive Nb-Ta anomalies and Th, Hf and Zr variations are comparable to other intra-cratonic rift-related lamproites. The geochemical variations (such as REE, HFSE and LILE) are consistent with an asthenospheric mantle source similar to the other lamproites in Bastar craton. Trace element modelling implies a low-degree partial melting (0.1–2%) of phlogopite-bearing garnet-lherzolite and/or phlogopite-bearing spinel-lherzolite mantle source. The widespread Proterozoic rifting events in the Bastar craton likely led to the melting and upwelling of the asthenospheric mantle and which further interacted with the metasomatized lithospheric mantle to form the parental melts of the lamproite dykes of the Kawardha area.
This paper theoretically introduces a new architecture for pumping leaky-dielectric fluids. For two such fluids layered in a channel, the mechanism utilises Maxwell stresses on fluid interfaces (referred to as menisci) induced by a periodic array of electrode pairs inserted between the two fluids and separated by the menisci. The electrode pairs are asymmetrically spaced and held at different potentials, generating an electric field with variation along the menisci. To induce surface charge accumulation, an electric field (and thus current flow) is also imposed in the direction normal to the menisci, using flat upper and lower electrodes, one in each fluid. The existence of both normal and tangential electric fields gives rise to Maxwell stresses on each meniscus, driving the flow in opposite directions on adjacent menisci. If the two menisci are the same length, then a vortex array is generated that results in no net flow; however, if the spacing is asymmetric, then the longer meniscus dominates, causing a net pumping in one direction. The pumping direction can be controlled by the (four) potentials of the electrodes, and the electrical properties of the two fluids. In the analysis, an asymptotic approximation is made that the interfacial electrode period is small compared to the fluid layer thicknesses, which reduces the analytical difficulty to an inner region close to the menisci. Closed-form solutions are presented for the potentials, velocity field and resulting pumping speed, for which maximum values are estimated, with reference to the electrical power required and feasibility.
We present a theoretical approach that derives the wavenumber $k^{-1}$ spectral scaling in turbulent velocity spectra using random field theory without assuming specific eddy correlation forms or Kolmogorov’s inertial-range scaling. We argue for the mechanism by Nikora (1999 Phys. Rev. Lett.83 (4), 734), modelling turbulence as a superposition of eddy clusters with eddy numbers inversely proportional to their characteristic length scale. Statistical mixing of integral scales within these clusters naturally yields the $k^{-1}$ scaling as an intermediate asymptotic regime. Building on the spectrum modelling introduced in Jetti et al. (2025b Z. Angew. Math. Physik.74 (3), 123), we develop and apply an integral formulation of the general velocity spectrum that reproduces the $k^{-1}$ regime observed in field spectra, thereby bridging theoretical derivation and empirical observations. The model is validated using wind data at a coastal site, and tidal data in a riverine environment where the –1 scaling persists beyond the surface layer logarithmic region. The results confirm the robustness of the model at various flow conditions, offering new insights into the spectral energy distribution in geophysical and engineering flows.
Crystallisation of the earliest minerals typically affects the composition of minerals subsequently formed, being controlled by their abundance and the compatibility/incompatibility of the relevant elements. Here we have investigated the effects of early tourmaline crystallisation on the formation of primary Be minerals (beryl and helvine–danalite) in metaluminous intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic. Tourmaline occurs in different textural-paragenetic types: (a) coarse- to medium-grained aggregates; (b) graphic (Tur+Qz) intergrowths; (c) fine-grained nodules (Tur+Qz+Pl+Kfs); (d) tourmaline pseudomorphs after biotite; (e) interstitial tourmaline; and (f) replacing helvine–danalite. The compositions of primary tourmalines (a), (b) and (c) vary from Ca- and Ti-rich Fe-dravite to Mg-poor schorl and dutrowite, and to magnesio-dutrowite, showing low to moderate Al (5.1–6.1 apfu), variable Mg (0.1–1.9 apfu) and Fe (1.3–2.2 apfu), low Mn (≤0.1 apfu), low to moderate Ca (0.1–0.4 apfu), and high Ti (≤0.55 apfu). Type (f) secondary tourmaline is poor in Mg, Ca and Ti (all ≤0.07 apfu), but rich in Na (0.64–0.81 apfu), Fe (0.68–2.17 apfu), Mn (0.31–0.80 apfu), Al (6.57–7.61 apfu), and F (0.37–0.58 apfu). Two distinct assemblages of early-formed Be minerals were recognised: the assemblage beryl ± phenakite occurs in pegmatites with rare interstitial tourmaline (e), whereas the assemblage helvine–danalite ± phenakite is characteristic of pegmatites with abundant early tourmaline (a). The assemblages of primary Be minerals in the individual pegmatites reflect how crystallisation and abundance of early tourmaline control the origin and composition of successive primary Be minerals. The crystallisation of abundant early-formed tourmaline depletes the residual melt of elements that are incorporated preferentially into the tourmaline structure (Al, Mg, Zn), whereas incompatible Mn accumulates, leading to the formation of Mn-rich helvine–danalite. In contrast, beryl only occurs in pegmatites where early-formed tourmaline is absent. The early crystallisation of tourmaline might thus affect the species and composition of later crystallising minerals.