To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Master the art of data converter design with this definitive textbook, a detailed and accessible introduction ideal for students and practicing engineers. Razavi's distinctive and intuitive pedagogical approach, building up from elementary components to complex systems. Step-by-step transistor-level designs and simulations offer a practical hands-on understanding of key design concepts. Comprehensive coverage of essential topics including sampling circuits, comparator design, digital-to-analog converters, flash topologies, SAR and pipelined architectures, time-interleaved converters, and oversampling systems. Over 250 examples pose thought-provoking questions, reinforcing core concepts and helping students develop confidence. Over 350 end-of-chapter homework problems to test student understanding, with solutions available for course instructors. Developed by leading author Behzad Razavi, and addressing all the principles and design concepts essential to today's engineers, this is the ideal text for senior undergraduate and graduate-level students and professional engineers who aspire to excel in data converter analysis and design.
While an understanding of electronic principles is vitally important for scientists and engineers working across many disciplines, the breadth of the subject can make it daunting. This textbook offers a concise and practical introduction to electronics, suitable for a one-semester undergraduate course as well as self-guided students. Beginning with the basics of general circuit laws and resistor circuits to ease students into the subject, the textbook then covers a wide range of topics, from passive circuits to semiconductor-based analog circuits and basic digital circuits. Exercises are provided at the end of each chapter, and answers to select questions are included at the end of the book. The complete solutions manual is available for instructors to download, together with eight laboratory exercises that parallel the text. Now in its second edition, the text has been updated and expanded with additional topic coverage and exercises.
Analog Electronic Circuits is a core subject for the undergraduate students of Electronics and Communication, Instrumentation, Computer and Electrical Engineering. The subject is also a must read for other branches of engineering like mechanical and civil Engineering. This book aims to provide a detailed coverage of the subject area with emphasis on fundamental concepts. It is an ideal textbook on analog electronic circuits for the undergraduate students, and a reference book for the graduate students. It provides a comprehensive coverage of the subject matter in reader friendly, easy to comprehend language. It includes more than 170 solved examples, 390 practice problems, and 300 figures. It covers discussion on small-signal amplifiers, negative feedback in amplifiers, linear and non-linear applications of operational amplifiers. Practical approximations are used at many places to avoid rigorous analysis methods.
This practically-oriented, all-inclusive guide covers the essential concepts of power electronics through MATLAB® examples and simulations. In-depth explanation of important topics including digital control, power electronic applications, and electrical drives make it a valuable reference for readers. The experiments and applications based on MATLAB® models using fuzzy logic and neural networks are included for better understanding. Engrossing discussion of concepts such as diac, light-emitting diode, thyristors, power MOSFET and static induction transistor, offers an enlightening experience to readers. With numerous solved examples, exercises, review questions, and GATE questions, the undergraduate and graduate students of electrical and electronics engineering will find this text useful.
The understanding of fundamental concepts of electrical engineering is necessary before moving on to more advanced concepts. This book is designed as a textbook for an introductory course in electrical engineering for undergraduate students from all branches of engineering. The text is organized into fourteen chapters, and provides a balance between theory and applications. Numerous circuit diagrams and explicit illustrations add to the readability of the text. The authors have covered some important topics such as electromagnetic field theory, electrostatics, electrical circuits, magnetostatics, network theorems, three-phase systems and electrical machines. A separate chapter on measurement and instrumentation covers important topics including errors in measurement, electro-mechanical indicating instruments, current transformers and potential transformers in detail. Pedagogical features are interspersed throughout the book for better understanding of concepts.