To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Aerodynamic characterisation from flight testing is an integral subroutine for evaluating a new flight vehicle’s aerodynamic performance, stability and controllability. The estimation of aerodynamic parameters from flight test data has extensively been explored, in the past, using estimation methods such as the equation error method, output error method and filter error method. However, in the current era, non-gradient-based estimation techniques are gaining attention from researchers due to their inherent data-driven optimisation capability to find the global best solution. In this paper, a novel non-gradient-based estimation method is proposed for the aerodynamic characterisation of unmanned aerial vehicles from flight data, which relies on the maximum likelihood method augmented with particle swarm optimisation. Flight data sets of a wing-alone unmanned aerial vehicle are used to demonstrate the capabilities of the proposed method in estimating aerodynamic derivatives. Estimates from the proposed method are corroborated with the wind tunnel test and output error method results. It has been observed that simulated flight vehicle responses using estimated parameters are in good agreement with measured data in most of the manoeuvers considered. Confidence in the estimates of linear and nonlinear aerodynamic parameters is well established with the lower limit of Cramer-Rao bounds, which are minimal. The proposed method also demonstrates good predictability of the quasi-steady stall aerodynamic model by estimating stall characteristic parameters such as aerofoil static stall characteristics parameter, hysteresis time constant and breakpoint. The overall performance of the proposed estimation method is on par with the output error method and is validated with the proof-of-match exercise.
Master the principles of structural dynamics with this comprehensive and self-contained textbook, with key theoretical concepts explained through real-world engineering applications.
The theory of natural modes of vibration, the finite element method, and the dynamic response of structures is balanced with practical applications to give students a thorough contextual understanding of the subject.
Enhanced coverage of damping, rotating systems, and parametric excitation provides students with superior understanding of these essential topics.
Examples and homework problems, closely linked to real-world applications, enrich and deepen student understanding.
Curated mathematical appendices equip students with all the tools necessary to excel, without disrupting coverage of core topics.
Containing all the material needed for a one- or two-semester course, and accompanied online by MATLAB/Python code, this authoritative textbook is the ideal introduction for graduate students in aerospace, mechanical, and civil engineering.
The alteration of the near-wall flow field of a turbulent boundary layer flow subjected to spanwise travelling transversal surface waves at a friction Reynolds number $Re_\tau \approx 1525$ is investigated. The results of a spatial noise-assisted multivariate empirical mode decomposition reveal that this flow control method periodically induces near-wall large-scale bursts while simultaneously lowering the energetic content of small-scale features. The increasing occurrence of intense large-scale ejections in the near-wall region is of particular importance for reducing the wall-shear stress since these ejections balance large-scale sweeps originating from the outer layer. Thus, they corrupt the outer-layer impact on the near-wall dynamics and, consequently, the overall fluctuation intensity at the wall is attenuated. This disturbed top-down momentum exchange is highlighted by an inner–outer interaction analysis, which further reveals an increased bottom-up communication provoked by the large-scale ejections. Moreover, it is shown that the periodic secondary flow field induced by the actuation interferes with the quasi-streamwise vortices in the near-wall region. The velocity gradients of the secondary flow field deform the vortices’ cross-section into an elliptic shape, which yields an unstable vortex state resulting in vortex disintegration. In combination with the effect of the large-scale ejections, the reduced number of quasi-streamwise vortices compared with the undisturbed boundary layer flow results in a decreased wall-normal momentum exchange and the widening and weakening of near-wall streaks. This yields a reduced fluctuation intensity in the near-wall region that lowers the overall wall-shear stress level.
This type of flow is usually observed on surfaces with low permeability and has therefore been one of the central problems in urban hydrology; its relevance lies in the design of small engineering structures for roads, highways, airports, and also for some surface irrigation systems. Detailed numerical solutions of the shallow-water equations have shown that the analysis of most overland flow situations can be reliably simplified using the kinematic wave approximation. The basic assumption of this approach is that the friction slope can be taken to be equal to the slope of the underlying surface. Analytical solutions of the resulting equation, albeit for special runoff situations, still provide useful insight regarding the rising and recession hydrographs for more general applications.
This chapter covers some applications of the atmospheric optics and the engineering principles in the previous chapters as they are employed in operational and proposed lidars. Many of the previous examples involved elastic backscatter aerosol lidars, so this chapter also includes many of the other most common types: wind lidars of several kinds; Rayleigh temperature lidar; differential absorption lidar (DIAL); Raman lidar for profiling trace gases, aerosols, and temperature; high spectral resolution lidar (HSRL); and resonance fluorescence lidar. Descriptions of these techniques are presented here with appropriate references, along with comments on the engineering challenges of these various types of lidars and the ways that they illustrate the principles laid out in the previous chapters. The data analysis algorithms for most of these types of lidar are derived. The laser remote sensing technique known as integrated path differential absorption (IPDA) is also described, along with its data analysis.
Methods to estimate evaporation from natural land surfaces can generally be subdivided into three broad categories. Mass transfer methods make use of measurements of wind velocity, temperature, and humidity; energy-budget methods require the same measurements in addition to measurements of radiation and heat conduction into the ground; water-budget methods rely on inflow, outflow, and storage change measurements in control volumes in the lower atmosphere, in the near surface soil, or in entire watersheds.
Partial cavity flows forming on a NACA0015 hydrofoil are visualized using high-speed cinematography and time-resolved X-ray densitometry. These observations reveal the underlying flow features that lead to the cloud cavity shedding. Previous studies have reported that both near-surface liquid re-entrant flow and bubbly shock waves can serve as the mechanisms causing cavity pinch-off and cloud shedding. We identify both mechanisms in the current study. The cavity shedding frequency was also examined and related to the underlying flow dynamics. The probability of re-entrant flow or bubbly shock-induced shedding processes are quantified, and the likelihood of each mechanism is shown to be a function of both the cavitation number and the Mach number of the bubbly mixture within the separated region of the cavity. When the Mach number of the two-phase mixture in the cavity exceeds unity, shock waves become the dominant mechanism that lead to large-scale cavity shedding and cloud cavitation.
Master the principles of structural dynamics with this comprehensive and self-contained textbook, with key theoretical concepts explained through real-world engineering applications.
The theory of natural modes of vibration, the finite element method, and the dynamic response of structures is balanced with practical applications to give students a thorough contextual understanding of the subject.
Enhanced coverage of damping, rotating systems, and parametric excitation provides students with superior understanding of these essential topics.
Examples and homework problems, closely linked to real-world applications, enrich and deepen student understanding.
Curated mathematical appendices equip students with all the tools necessary to excel, without disrupting coverage of core topics.
Containing all the material needed for a one- or two-semester course, and accompanied online by MATLAB/Python code, this authoritative textbook is the ideal introduction for graduate students in aerospace, mechanical, and civil engineering.
Most near-surface geologic formations which contain water are unconsolidated porous rocks, broadly referred to as soils close to the surface, and as aquifers at greater depths. The relationship between the degree of water saturation of such a porous material and pressure of the water is referred to as the soil-water characteristic. The specific flow rate of water can usually be assumed to be proportional to the hydraulic gradient, according to Darcy’s law. The proportionality constant, called the hydraulic conductivity, generally exhibits anisotropy and scale dependency, and is a strong function of the degree of water saturation. Although some insight can be gained from theoretical estimation models, it is best determined by experiment. For certain problems it can be convenient to transform Darcy’s law into a diffusion equation, by making the flow rate proportional to the water content gradient. For rigid porous media, combination of the continuity equation with Darcy’s law yields the Richardson-Richards equation; under steady saturated conditions this becomes the Laplace equation. For elastic saturated porous media this combination leads to the Terzaghi and Jacob equations.
The general premise of this chapter is to address thermodynamic behaviors and structure of charged macromolecules in non-dilute conditions, such as semidilute and concentrated solutions. After a summary of uncharged macromolecules in concentrated solutions, the coupling between the electrostatic and topological correlations is treated. Five regimes of polymer concentrations are outlined accompanied by a collection of experimental data. Spontaneous formation of large aggregates formed by similarly charged macromolecules is described in detail.