To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
With exceptional carrier mobilities, mechanical strength, and optical transparency, graphene is a leading material for next-generation electronic devices. However, for most applications, graphene will need to be integrated with other materials, which motivates efforts to understand and tune its surface chemistry. In particular, the modification of graphene via organic functionalization holds promise for tuning the electronic properties of graphene, controlling interfaces with other materials, and tailoring surface chemical reactivity. Toward these ends, this article reviews recent work from our laboratory on noncovalent and covalent organic functionalization of graphene. Using ultrahigh vacuum scanning tunneling microscopy (UHV STM), the molecular ordering and electronic properties of organic adlayers on graphene are characterized at the molecular scale. In addition, UHV STM is employed to nanopattern these organic layers with sub-5 nm resolution, thus providing a pathway for producing graphene-based heteromolecular nanostructures.
Climate change, diminishing reserves of fossil fuels, energy security, and consumer demand all depend on alternatives to our current course of energy usage and consumption. A broad consensus concurs that implementing energy efficiency and renewable energy technologies are necessities now rather than luxuries to be deferred to some distant future. Neither effort can effect serious change in our energy patterns without marked improvements in electrical energy storage, with electrochemical energy storage in batteries and electrochemical capacitors serving as key components of any plausible scenario.1,2 Consumer expectations of convenience and long-lived portable power further drive the need to push these old devices onto a new performance curve. This issue of MRS Bulletin addresses the significant advances occurring in research laboratories around the world as old electrode materials and designs are re-envisioned, and abandoned materials of the past are reinvigorated by arranging matter and function on the nanoscale to bring batteries and electrochemical capacitors into the 21st century.
Over the past decades, nanoclays have been widely used as additives to improve the strength as well as the fire performance of polymers, as evidenced by applications and a large number of studies reported in the literature. The mechanism of action of nanoclays is now relatively well understood, despite some aspects remaining unclear, such as the phenomena controlling ignition time. During the burning of polymer nanocomposites, a surface layer is formed on top of the virgin polymer, which acts as a mass and heat shield slowing down mass transfer of pyrolyzed gas to the surface, because less heat is transferred to unpyrolyzed material. Furthermore, in the presence of nanoparticles, the temperature at the surface of the surface layer increases far beyond the so-called ignition temperature of the polymer, which results in increased surface reradiation losses and, hence, decreased heat transfer to the solid. The formation of this surface layer has been observed in a number of studies using the cone calorimeter, where a significant reduction of the peak heat release rate (PHRR) compared with the corresponding pure polymer was observed for relatively thin samples. Zhang, Delichatsios, and Bourbigot also studied the effect of the surface layer numerically, finding that the reduction in heat transfer at the interface of the surface layer and the virgin polymer is inversely proportional to the number of nanoparticles that remain on the surface after degradation of the polymer (if the concentration of nanoparticles is less than about 10%).
In the present work, Fe3O4 nanospheres, sponges, and urchins were prepared. Investigation of static magnetic and microwave electromagnetic (EM) characteristics of polymorphic Fe3O4 nanomaterials showed that morphology plays a crucial role in determining the resulting properties. Compared with Fe3O4 nanospheres and urchins, enhanced saturation magnetization and coercivity were observed in Fe3O4 sponges composed of ordered nanofibers. Enhancement of saturation magnetization and coercivity are associated with increased magnetic interactions and shape anisotropy, respectively. The Fe3O4 sponges and urchins produced reflection loss (RL) values of −35.77 dB at 8.0 GHz and −43.23 dB at 16.8 GHz, respectively. The excellent microwave absorption performance is ascribed to their unique morphologies. Such morphologies resulted in reinforced EM parameters and multiresonant behavior.
The development of polymer/clay nanocomposites as commercial materials faces the problem of limited miscibility of inorganic hydrophilic layered silicates and organic hydrophobic polymers. Intensive studies have led to various strategies, including the use of surface-active organic compounds, chemical modification of the polymer matrix, and application of macromolecular compatibilizers that produce a desired improvement of miscibility and therefore facilitate the formation of nanostructure. The application of organically modified clays provides certain properties to nanocomposite materials superior to those of systems containing sodium montmorillonite. However, ammonium salts, which are most frequently applied, suffer from thermal degradation during the fabrication and further processing of nanocomposites. This leads to changes in the surface properties of clays resulting in alteration of nanocomposite structure and related properties and facilitates the occurrence of some unwanted side reactions and the contamination of polymeric material with the products of thermal degradation of an organic modifier, which may be responsible for enhanced thermal degradation of the polymer matrix, accelerated aging, color formation, plasticization effects, and so forth. The need to improve the thermal stability of organoclays applied in the preparation of polymeric nanocomposites has motivated the search for an organic modifier combining high thermal stability with high efficiency in facilitating dispersion of a nanofiller in a polymer matrix.
The term “nanocomposite” is widely used to describe a very broad range of materials, where one of the phases has a submicrometer dimension . In the case of polymer-based nanocomposites, this typically involves the incorporation of “nano” fillers with one (platelets), two (fibers, tubes), or all three dimensions at the submicrometer scale. However, strictly speaking, simply using nanometer-scaled fillers is not sufficient for obtaining genuine/true nanocomposites: these fillers must also be well dispersed down to individual particles and give rise to intrinsically new properties, which are not present in the respective macroscopic composites or the pure components. In this chapter, we shall use a broader definition, encompassing also “nanofilled polymer composites”, where – even without complete dispersion or in the absence of any new/novel functionalities – there exist substantial concurrent enhancements of multiple properties (for example, mechanical, thermal, thermomechanical, barrier, and flammability). Further, we shall limit our discussion to one example, focusing on poly(ethylene terephthalate) (PET) with mica-type layered aluminosilicates.
The use of plastic materials, from construction materials to consumer electronics, has been increasing substantially in the past few decades. Easy processing, low density, and possible recycling make plastic the first choice of materials for many applications, such as automobile parts and food packaging structures. Comparing with traditional materials such as metal and concrete, plastic materials are combustible in a fire. Enhancing the flame retardation of plastic materials has been a priority in material development for many researchers. Many fire retardation standards have been established for relevant industries. Several trade organizations have also created industrial standards for fire safety standards and testing procedures. Underwriters Laboratories (UL) is an independent product safety certification organization that has been testing products and writing standards for safety for more than a century. UL has extensive standards and testing protocols for building materials, energy, lighting, power, and control, as well as wire and cables. The International Electrotechnical Commission (IEC) also publishes extensive standards for materials used in the electrical and electronic industries.
Gd silicide nanostructures epitaxially grown on Si(001) are studied by plan-view transmission electron microscopy and associated nanobeam electron diffraction, as well as scanning tunneling microscopy. The nanobeam diffraction measurements show a direct correlation between the nanostructure morphology, either nanowires or islands, and the silicide crystal structure. Scanning tunneling microscopy shows a phase transformation from nanowires to islands that nucleate at nanowire intersections. A specific mechanism for this transformation is proposed that explains nanowire growth behavior previously observed on vicinal Si surfaces.
The influences of temperature, cone height, and apex angle on the tensile and compressive behaviors of open-tip carbon nanocones (CNCs) under axial strains were examined. The tensile failure strain and failure load of the CNC were found to decline evidently as the system temperature increases. The average failure strain decreases with the growth in the cone height. Concerning compressive behaviors, the critical strain and critical load of the CNC reduce manifestly with the increase in the system temperature and the apex angle. As the cone height grows, the critical strain decreases evidently but the critical load has no obvious change. The buckling mode does not have much variation when the temperature increases. It displays a more distorted buckling pattern with the growth in the cone height and transfers from an axisymmetric pattern to an unsymmetrical and more warped pattern when the apex angle expands.
By
Vladimir E. Yudin,
Joshua U. Otaigbe, aInstitute of Macromolecular Compounds, Russian Academy of Sciences, Russia bSchool of Polymers and High Performance Materials, The University of Southern Mississippi, USA